Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,026)
  • Open Access

    ARTICLE

    Energy-Efficient Internet of Things-Based Wireless Sensor Network for Autonomous Data Validation for Environmental Monitoring

    Tabassum Kanwal1, Saif Ur Rehman1,*, Azhar Imran2, Haitham A. Mahmoud3

    Computer Systems Science and Engineering, Vol.49, pp. 185-212, 2025, DOI:10.32604/csse.2024.056535 - 10 January 2025

    Abstract This study presents an energy-efficient Internet of Things (IoT)-based wireless sensor network (WSN) framework for autonomous data validation in remote environmental monitoring. We address two critical challenges in WSNs: ensuring data reliability and optimizing energy consumption. Our novel approach integrates an artificial neural network (ANN)-based multi-fault detection algorithm with an energy-efficient IoT-WSN architecture. The proposed ANN model is designed to simultaneously detect multiple fault types, including spike faults, stuck-at faults, outliers, and out-of-range faults. We collected sensor data at 5-minute intervals over three months, using temperature and humidity sensors. The ANN was trained on 70%… More >

  • Open Access

    ARTICLE

    Machine Learning for QoS Optimization and Energy-Efficient in Routing Clustering Wireless Sensors

    Rahma Gantassi, Zaki Masood, Yonghoon Choi*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 327-343, 2025, DOI:10.32604/cmc.2024.058143 - 03 January 2025

    Abstract Wireless sensor network (WSN) technologies have advanced significantly in recent years. Within WSNs, machine learning algorithms are crucial in selecting cluster heads (CHs) based on various quality of service (QoS) metrics. This paper proposes a new clustering routing protocol employing the Traveling Salesman Problem (TSP) to locate the optimal path traversed by the Mobile Data Collector (MDC), in terms of energy and QoS efficiency. To be more specific, to minimize energy consumption in the CH election stage, we have developed the M-T protocol using the K-Means and the grid clustering algorithms. In addition, to improve More >

  • Open Access

    ARTICLE

    A Verifiable Trust-Based CP-ABE Access Control Scheme for Cloud-Assisted Renewable Energy Systems

    Jiyu Zhang1,*, Kehe Wu1, Ruomeng Yan1, Zheng Tian2, Yizhen Sun2, Yuxi Wu2, Yaogong Guo3

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 1211-1232, 2025, DOI:10.32604/cmc.2024.055243 - 03 January 2025

    Abstract Renewable Energy Systems (RES) provide a sustainable solution to climate warming and environmental pollution by enhancing stability and reliability through status acquisition and analysis on cloud platforms and intelligent processing on edge servers (ES). However, securely distributing encrypted data stored in the cloud to terminals that meet decryption requirements has become a prominent research topic. Additionally, managing attributes, including addition, deletion, and modification, is a crucial issue in the access control scheme for RES. To address these security concerns, a trust-based ciphertext-policy attribute-based encryption (CP-ABE) device access control scheme is proposed for RES (TB-CP-ABE). This… More >

  • Open Access

    REVIEW

    Overview and Prospect of Distributed Energy P2P Trading

    Jiajia Liu*, Mingxing Tian, Xusheng Mao

    Energy Engineering, Vol.122, No.1, pp. 379-404, 2025, DOI:10.32604/ee.2024.058137 - 27 December 2024

    Abstract After a century of relative stability in the electricity sector, the widespread adoption of distributed energy resources, along with recent advancements in computing and communication technologies, has fundamentally altered how energy is consumed, traded, and utilized. This change signifies a crucial shift as the power system evolves from its traditional hierarchical organization to a more decentralized approach. At the heart of this transformation are innovative energy distribution models, like peer-to-peer (P2P) sharing, which enable communities to collaboratively manage their energy resources. The effectiveness of P2P sharing not only improves the economic prospects for prosumers, who… More >

  • Open Access

    ARTICLE

    Bilevel Optimal Scheduling of Island Integrated Energy System Considering Multifactor Pricing

    Xin Zhang*, Mingming Yao, Daiwen He, Jihong Zhang, Peihong Yang, Xiaoming Zhang

    Energy Engineering, Vol.122, No.1, pp. 349-378, 2025, DOI:10.32604/ee.2024.057676 - 27 December 2024

    Abstract In this paper, a bilevel optimization model of an integrated energy operator (IEO)–load aggregator (LA) is constructed to address the coordinate optimization challenge of multiple stakeholder island integrated energy system (IIES). The upper level represents the integrated energy operator, and the lower level is the electricity-heat-gas load aggregator. Owing to the benefit conflict between the upper and lower levels of the IIES, a dynamic pricing mechanism for coordinating the interests of the upper and lower levels is proposed, combined with factors such as the carbon emissions of the IIES, as well as the lower load… More > Graphic Abstract

    Bilevel Optimal Scheduling of Island Integrated Energy System Considering Multifactor Pricing

  • Open Access

    ARTICLE

    Modeling and Capacity Configuration Optimization of CRH5 EMU On-Board Energy Storage System

    Mingxing Tian*, Weiyuan Zhang, Zhaoxu Su

    Energy Engineering, Vol.122, No.1, pp. 307-329, 2025, DOI:10.32604/ee.2024.057426 - 27 December 2024

    Abstract In the context of the “dual carbon” goals, to address issues such as high energy consumption, high costs, and low power quality in the rapid development of electrified railways, this study focused on the China Railways High-Speed 5 Electric Multiple Unit and proposed a mathematical model and capacity optimization method for an on-board energy storage system using lithium batteries and supercapacitors as storage media. Firstly, considering the electrical characteristics, weight, and volume of the storage media, a mathematical model of the energy storage system was established. Secondly, to tackle problems related to energy consumption and… More >

  • Open Access

    ARTICLE

    Optimal Scheduling of an Independent Electro-Hydrogen System with Hybrid Energy Storage Using a Multi-Objective Standardization Fusion Method

    Suliang Ma1, Zeqing Meng1, Mingxuan Chen2,*, Yuan Jiang3

    Energy Engineering, Vol.122, No.1, pp. 63-84, 2025, DOI:10.32604/ee.2024.057216 - 27 December 2024

    Abstract In the independent electro-hydrogen system (IEHS) with hybrid energy storage (HESS), achieving optimal scheduling is crucial. Still, it presents a challenge due to the significant deviations in values of multiple optimization objective functions caused by their physical dimensions. These deviations seriously affect the scheduling process. A novel standardization fusion method has been established to address this issue by analyzing the variation process of each objective function’s values. The optimal scheduling results of IEHS with HESS indicate that the economy and overall energy loss can be improved 2–3 times under different optimization methods. The proposed method More > Graphic Abstract

    Optimal Scheduling of an Independent Electro-Hydrogen System with Hybrid Energy Storage Using a Multi-Objective Standardization Fusion Method

  • Open Access

    ARTICLE

    Energy Efficiency of a Solar Green Building Using Bio-Sourced Materials for Indoor Temperature and Humidity Optimization

    Soumia Mounir1,2,3,*, Youssef Maaloufa1,2,3, Abdelhamid Khabbazi2, Elina Mohd Husini4, Nurul Syala Abdul Latip4, Yakubu Aminu Dodo5,6, Rime EL Harrouni2,7, Mina Amazal3, Asma Souidi3, Malika Atigui3, Ahmed Aharoune3

    Energy Engineering, Vol.122, No.1, pp. 41-62, 2025, DOI:10.32604/ee.2024.057125 - 27 December 2024

    Abstract A clean environment with low carbon emissions is the goal of research on the development of green and sustainable buildings that use bio-sourced materials in conjunction with solar energy to create more sustainable cities. This is particularly true in Africa, where there aren’t many studies on the topic. The current study suggests a 90 m2 model of a sustainable building in a dry climate that is movable to address the issue of housing in remote areas, ensures comfort in harsh weather conditions, uses solar renewable resources—which are plentiful in Africa—uses bio-sourced materials, and examines how these… More > Graphic Abstract

    Energy Efficiency of a Solar Green Building Using Bio-Sourced Materials for Indoor Temperature and Humidity Optimization

  • Open Access

    REVIEW

    Hydrogen Energy Storage System: Review on Recent Progress

    Millenium Wong1, Hadi Nabipour Afrouzi2,*

    Energy Engineering, Vol.122, No.1, pp. 1-39, 2025, DOI:10.32604/ee.2024.056707 - 27 December 2024

    Abstract A hydrogen energy storage system (HESS) is one of the many rising modern green innovations, using excess energy to generate hydrogen and storing it for various purposes. With that, there have been many discussions about commercializing HESS and improving it further. However, the design and sizing process can be overwhelming to comprehend with various sources to examine, and understanding optimal design methodologies is crucial to optimize a HESS design. With that, this review aims to collect and analyse a wide range of HESS studies to summarise recent studies. Two different collections of studies are studied,… More >

  • Open Access

    ARTICLE

    Coordinated Control Strategy of New Energy Power Generation System with Hybrid Energy Storage Unit

    Yun Zhang1,*, Zifen Han2, Biao Tian1, Ning Chen2, Yi Fan3

    Energy Engineering, Vol.122, No.1, pp. 167-184, 2025, DOI:10.32604/ee.2024.056190 - 27 December 2024

    Abstract The new energy power generation is becoming increasingly important in the power system. Such as photovoltaic power generation has become a research hotspot, however, due to the characteristics of light radiation changes, photovoltaic power generation is unstable and random, resulting in a low utilization rate and directly affecting the stability of the power grid. To solve this problem, this paper proposes a coordinated control strategy for a new energy power generation system with a hybrid energy storage unit based on the lithium iron phosphate-supercapacitor hybrid energy storage unit. Firstly, the variational mode decomposition algorithm is… More >

Displaying 1-10 on page 1 of 1026. Per Page