Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (183)
  • Open Access


    A Review of Metamaterial Invisibility Cloaks

    Balamati Choudhury1, R. M. Jha1

    CMC-Computers, Materials & Continua, Vol.33, No.3, pp. 275-308, 2013, DOI:10.3970/cmc.2013.033.275

    Abstract The exciting features of metamaterial in conjunction with transformation optics leads to various applications in the microwave regime with such examples as invisible cloak, frequency selective surfaces (FSS), radomes, etc. The concept of electromagnetic invisibility is very much important in aerospace platform. Hence to study the feasibility of implementation of this concept for stealth, an extensive literature survey of metamaterial cloaks has been carried out and reported in this paper along with the basic concept of cloaking. To make the review more effective, the technical papers are classified into three broad sections viz. mathematical modeling, design and simulations, and fabrications… More >

  • Open Access


    Transient Analysis of Elastic Wave Propagation in Multilayered Structures

    Yi-Hsien Lin1, Chien-Ching Ma1,2

    CMC-Computers, Materials & Continua, Vol.24, No.1, pp. 15-42, 2011, DOI:10.3970/cmc.2011.024.015

    Abstract In this article, explicit transient solutions for one-dimensional wave propagation behavior in multi-layered structures are presented. One of the objectives of this study is to develop an effective analytical method for constructing solutions in multilayered media. Numerical calculations are performed by three methods: the generalized ray method, numerical Laplace inversion method (Durbin's formula), and finite element method (FEM). The analytical result of the generalized ray solution for multilayered structures is composed of a matrix-form Bromwich expansion in the transform domain. Every term represents a group of waves, which are transmitted or reflected through the interface. The matrix representation of the… More >

  • Open Access


    A Coupling Algorithm of Finite Element Method and Smoothed Particle Hydrodynamics for Impact Computations

    Yihua Xiao1, Xu Han1,2, Dean Hu1

    CMC-Computers, Materials & Continua, Vol.23, No.1, pp. 9-34, 2011, DOI:10.3970/cmc.2011.023.009

    Abstract For impact computations, it is efficient to model small and large deformation regions by Finite Element Method (FEM) and Smoothed Particle Hydrodynamics (SPH), respectively. However, it requires an effective algorithm to couple FEM and SPH calculations. To fulfill this requirement, an alternative coupling algorithm is presented in this paper. In the algorithm, the coupling between element and particle regions are achieved by treating elements as imaginary particles and applying equivalent tractions to element sides on coupling interfaces. In addition, an adaptive coupling technique is proposed based on the algorithm to improve the computational efficiency of FEM-SPH coupling further. For this… More >

  • Open Access


    Analysis and Experiment on Incremental Forming Process for the Spiral Plate of Continuous Screw Conveyer

    S. Gao1, K. Nakasa2, K. Nogi3, L. Huang4

    CMC-Computers, Materials & Continua, Vol.22, No.1, pp. 39-54, 2011, DOI:10.3970/cmc.2011.022.039

    Abstract An incremental press-forming method was newly developed for the fabrication of spiral plates of a continuous screw conveyer, boring screw, screw pump and so on. In this method, a pair of V-shaped punches and dies with two opposite inclined edges are used instead of punch and die with spiral surfaces. The experiments on incremental forming were carried out on aluminum alloy and steel disks with a hole and a slit, and the deformation process of the plate during and after the press-forming was simulated by a finite element method (FEM). The press-forming shows that the spiral plate has a correct… More >

  • Open Access


    Direct Coupling of Natural Boundary Element and Finite Element on Elastic Plane Problems in Unbounded Domains

    Zhao Huiming1, Dong Zhengzhu1, Chen Jiarui1, Yang Min1

    CMC-Computers, Materials & Continua, Vol.21, No.3, pp. 209-216, 2011, DOI:10.3970/cmc.2011.021.209

    Abstract The advantages of coupling of a natural boundary element method and a finite element method are introduced. Then we discuss the principle of the direct coupling of NBEM and FEM and its implementation. The comparison of the results between the direct coupling method and FEM proves that the direct coupling method is simple, feasible and valid in practice. More >

  • Open Access


    A Nonlinear Optimization Algorithm for Lower Bound Limit and Shakedown Analysis

    G. Gang1, Y.H. Liu2

    CMC-Computers, Materials & Continua, Vol.20, No.3, pp. 251-272, 2010, DOI:10.3970/cmc.2010.020.251

    Abstract Limit and shakedown analysis theorems are the theories of classical plasticity for the direct computation of the load-carrying capacity under proportional and varying loads. Based on Melan's theorem, a solution procedure for lower bound limit and shakedown analysis of three-dimensional (3D) structures is established making use of the finite element method (FEM). The self-equilibrium stress fields are expressed by linear combination of several basic self-equilibrium stress fields with parameters to be determined. These basic self-equilibrium stress fields are elastic responses of the body to imposed permanent strains obtained through elastic-plastic incremental analysis by the three-dimensional finite element method (3D-FEM). The… More >

  • Open Access


    The Molecular Dynamic Finite Element Method (MDFEM)

    Lutz Nasdala1 , Andreas Kempe1 and Raimund Rolfes1

    CMC-Computers, Materials & Continua, Vol.19, No.1, pp. 57-104, 2010, DOI:10.3970/cmc.2010.019.057

    Abstract In order to understand the underlying mechanisms of inelastic material behavior and nonlinear surface interactions, which can be observed on macroscale as damping, softening, fracture, delamination, frictional contact etc., it is necessary to examine the molecular scale. Force fields can be applied to simulate the rearrangement of chemical and physical bonds. However, a simulation of the atomic interactions is very costly so that classical molecular dynamics (MD) is restricted to structures containing a low number of atoms such as carbon nanotubes. The objective of this paper is to show how MD simulations can be integrated into the finite element method… More >

  • Open Access


    Thermo-Elastic Localization Relationships for Multi-Phase Composites

    Giacomo Landi1, Surya R. Kalidindi2

    CMC-Computers, Materials & Continua, Vol.16, No.3, pp. 273-294, 2010, DOI:10.3970/cmc.2010.016.273

    Abstract In this paper, we present a computationally efficient multi-scale framework for predicting the local fields in the representative volume element of a multiphase material system subjected to thermo-mechanical loading conditions. This framework for localization relationships is a natural extension of our recent work on two-phase composites subjected to purely mechanical loading. In this novel approach, the localization relationships take on a simple structure expressed as a series sum, where each term in the series is a convolution product of local structure and the governing physics expressed in the form of influence coefficients. Another salient feature of this approach is its… More >

  • Open Access


    Determination of Temperature-Dependent Elasto-Plastic Properties of Thin-Film by MD Nanoindentation Simulations and an Inverse GA/FEM Computational Scheme

    D. S. Liu1, C. Y. Tsai1, S. R. Lyu2

    CMC-Computers, Materials & Continua, Vol.11, No.2, pp. 147-164, 2009, DOI:10.3970/cmc.2009.011.147

    Abstract This study presents a novel numerical method for extracting the tempe -rature-dependent mechanical properties of the gold and aluminum thin-films. In the proposed approach, molecular dynamics (MD) simulations are performed to establish the load-displacement response of the thin substrate nanoindented at temperatures ranging from 300-900 K. A simple but effective procedure involving genetic algorithm (GA) and finite element method (FEM) is implemented to extract the material constants of the gold and aluminum substrates. The material constants are then used to construct the corresponding stress-strain curve, from which the elastic modulus, yield stress and the tangent modulus of the thin film… More >

  • Open Access


    Finite Element Analysis for the Treatment of Proximal Femoral Fracture

    Ching-Chi Hsu1, Jinn Lin2, Yongyut Amaritsakul3, Takalamesar Antonius3, Ching-Kong Chao3,4

    CMC-Computers, Materials & Continua, Vol.11, No.1, pp. 1-14, 2009, DOI:10.3970/cmc.2009.011.001

    Abstract Dynamic hip screw and gamma nail have been widely used to treat the patients with proximal femoral fractures, but clinical failures of those implants are still to be found. This study developed three-dimensional finite element models to investigate the biomechanical performances of the implants. Two kinds of commercially available implants (dynamic hip screw and gamma nail) and one newly designed implant (double screw nail) under three kinds of the proximal femoral fractures (neck fracture, subtrochanteric fracture, and subtrochanteric fracture with gap) were evaluated. Double screw nail showed better biomechanical performances than dynamic hip screw and gamma nail. Two commercially available… More >

Displaying 171-180 on page 18 of 183. Per Page