Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (194)
  • Open Access

    ARTICLE

    Mathematical Modelling and 3D FEM Analysis of the Influence of Initial Stresses on the ERR in a Band Crack’s Front in the Rectangular Orthotropic Thick Plate

    Arzu Turan Dincel1, Surkay D. Akbarov2,3

    CMC-Computers, Materials & Continua, Vol.53, No.3, pp. 249-270, 2017, DOI:10.32604/cmc.2017.053.265

    Abstract This paper deals with the mathematical modelling and 3D FEM study of the energy release rate (ERR) in the band crack’s front contained in the orthotropic thick rectangular plate which is stretched or compressed initially before the loading of the crack's edge planes. The initial stretching or compressing of the plate causes uniformly distributed normal stress to appear acting in the direction which is parallel to the plane on which the band crack is located. After the appearance of the initial stress in the plate it is assumed that the crack's edge planes are loaded with additional uniformly distributed normal… More >

  • Open Access

    ARTICLE

    The Stable Explicit Time Stepping Analysis with a New Enrichment Scheme by XFEM

    Xue-cong Liu1, Qing Zhang1,*, Xiao-zhou Xia1

    CMC-Computers, Materials & Continua, Vol.53, No.3, pp. 187-206, 2017, DOI:10.3970/cmc.2017.053.203

    Abstract This paper focuses on the study of the stability of explicit time integration algorithm for dynamic problem by the Extended Finite Element Method (XFEM). A new enrichment scheme of crack tip is proposed within the framework of XFEM. Then the governing equations are derived and evolved into the discretized form. For dynamic problem, the lumped mass and the explicit time algorithm are applied. With different grid densities and different forms of Newmark scheme, the Dynamic Stress Intensity Factor (DSIF) is computed by using interaction integral approach to reflect the dynamic response. The effectiveness of the proposed scheme is demonstrated through… More >

  • Open Access

    ARTICLE

    Forced and Natural Vibrations of an Orthotropic Pre-Stressed Rectangular Plate with Neighboring Two Cylindrical Cavities

    U. Babuscu Yesil1

    CMC-Computers, Materials & Continua, Vol.53, No.1, pp. 1-22, 2017, DOI:10.3970/cmc.2017.053.001

    Abstract Forced and natural vibrations of a rectangular pre-stressed orthotropic composite plate containing two neighboring cylindrical cavities whose cross sections are rectangular with rounded-off corners are investigated numerically. It is assumed that all the end surfaces of the rectangular pre-stressed composite plate are simply supported and subjected to a uniformly distributed normal time-harmonic force on the upper face plane. The considered problem is formulated within the Three-Dimensional Linearized Theory of Elastic Waves in Initially Stressed Bodies (TDLTEWISB). The influence of mechanical and geometrical parameters as well as the initial stresses and the effect of cylindrical cavities on the dynamical characteristics of… More >

  • Open Access

    ARTICLE

    Experimental and Numerical Analysis of the Polyvinyl Chloride (PVC) Mechanical Behavior Response

    H. Khellafi1, H.M. Meddah1, B. Ould Chikh1, B. Bouchouicha2, M. Benguediab2, M. Bendouba3

    CMC-Computers, Materials & Continua, Vol.49-50, No.1, pp. 31-45, 2015, DOI:10.3970/cmc.2015.049.031

    Abstract The polyvinyl chloride PVC is a polymer material widely used for a large variety of applications. The present work focuses on the identification of the physical processes responsible for the mechanical properties of the PVC containing different crystallinities rate applied in large deformation and different strain rates. In order to understand the behavior of the PVC, a thermodynamic modeling is needed. Therefore, the contribution of this approach was demonstrated by experiment and numerical modeling. This comparative study demonstrates that the proposed model provides better agreement with experimental evidence. More >

  • Open Access

    ARTICLE

    Analysis of Local Fracture Strain and Damage Limit of Advanced High Strength Steels using Measured Displacement Fields and FEM

    N. Ma1,2, K. Sato3, K. Takada4

    CMC-Computers, Materials & Continua, Vol.46, No.3, pp. 195-219, 2015, DOI:10.3970/cmc.2015.046.195

    Abstract The local mechanical behaviors of advanced high strength steels undergoing a very large strain from uniform plastic deformation to fracture were investigated with the aid of a measured displacement field and a measurement based FEM. As a measurement method, a digital image grid method (DIGM) was developed and the three-direction transient displacement field on uniaxial tensile test pieces was measured. Combining the measured transient displacement field with the finite element method, a measurement based FEM (M-FEM) was developed for the computation of distribution of the local strains, local stresses and ductile damage accumulation in a tensile test piece. Furthermore, the… More >

  • Open Access

    ARTICLE

    SPH and FEM Investigation of Hydrodynamic Impact Problems

    Al-Bahkali Essam1, Souli Mhamed2, Al-Bahkali Thamar1

    CMC-Computers, Materials & Continua, Vol.46, No.1, pp. 57-78, 2015, DOI:10.3970/cmc.2015.046.057

    Abstract Simulation of hydrodynamic impact problems and its effect on surrounding structures, can be considered as a fluid structure coupling problem. The application is mainly used in automotive and aerospace engineering and also in civil engineering. Classical FEM and Finite Volume methods were the main formulations used by engineers to solve these problems. For the last decades, new formulations have been developed for fluid structure coupling applications using mesh free methods as SPH method, (Smooth Particle Hydrodynamic) and DEM (Discrete Element Method). Up to these days very little has been done to compare different methods and assess which one would be… More >

  • Open Access

    ARTICLE

    A Simple Locking-Alleviated 3D 8-Node Mixed-Collocation C0 Finite Element with Over-Integration, for Functionally-Graded and Laminated Thick-Section Plates and Shells, with & without Z-Pins

    Leiting Dong1,2, Ahmed S. El-Gizawy3, Khalid A. Juhany3, Satya N. Atluri2

    CMC-Computers, Materials & Continua, Vol.41, No.3, pp. 163-192, 2014, DOI:10.3970/cmc.2014.041.163

    Abstract Following previous work of [Dong, El-Gizawy, Juhany, Atluri (2014)], a simple locking-alleviated 3D 8-node mixed-collocation C0 finite element (denoted as CEH8) is developed in this study, for the modeling of functionally-graded or laminated thick-section composite plates and shells, without using higher-order or layer-wise zig-zag plate and shell theories which are widely popularized in the current literature. The present C0 element independently assumes an 18-parameter linearly-varying Cartesian strain field. The independently assumed Cartesian strains are related to the Cartesian strains derived from mesh-based Cartesian displacement interpolations, by exactly enforcing 18 pre-defined constraints at 18 pre-selected collocation points. The constraints are rationally… More >

  • Open Access

    ARTICLE

    A Simple Locking-Alleviated 4-Node Mixed-Collocation Finite Element with Over-Integration, for Homogeneous or Functionally-Graded or Thick-Section Laminated Composite Beams

    Leiting Dong1, Ahmed S. El-Gizawy2, Khalid A. Juhany2, Satya N. Atluri3

    CMC-Computers, Materials & Continua, Vol.40, No.1, pp. 49-78, 2014, DOI:10.3970/cmc.2014.040.049

    Abstract In this study, a simple 4-node locking-alleviated mixed finite element (denoted as CEQ4) is developed, for the modeling of homogeneous or functionally graded or laminated thick-section composite beam structures, without using higher-order (in the thickness direction) or layer-wise zig-zag theories of composite laminates which are widely popularized in current literature. Following the work of [Dong and Atluri (2011)], the present element independently assumes a 5-parameter linearly-varying Cartesian strain field. The independently assumed Cartesian strains are related to the Cartesian strains derived from mesh-based Cartesian displacement interpolations, by exactly enforcing 5 pre-defined constraints at 5 pre-selected collocation points. The constraints are… More >

  • Open Access

    ARTICLE

    Numerical Evaluation of Variation in ‘Characteristic Distance’ due to Fracture Specimen Thickness and Temperature

    Sanjeev Saxena1, Raghvendra Singh2, Geeta Agnihotri2

    CMC-Computers, Materials & Continua, Vol.36, No.3, pp. 257-270, 2013, DOI:10.3970/cmc.2013.036.257

    Abstract The present numerical study is an attempt to understand the dependency of characteristic distance on the fracture specimen thickness and temperature. The presented work will be useful to establish the characteristic distance prediction methodology using three dimensional FEM model. Based on the methods proposed for the numerical prediction of characteristic distance, it comes out that it depends on fracture specimen thickness and finally it converges after a specified thickness of fracture specimen. In Armco iron material, characteristic distance varies in temperature ranges where dynamic strain ageing phenomenon is observed, initially decrease and then increases again. More >

  • Open Access

    ARTICLE

    Finite Element Analysis of Delamination inWoven Composites under Quasi-Static Indentation

    M. C. Song1, B.V. Sankar1, G. Subhash1, C. F. Yen2

    CMC-Computers, Materials & Continua, Vol.35, No.1, pp. 67-85, 2013, DOI:10.3970/cmc.2013.035.067

    Abstract Delamination initiation and propagation in plain woven laminates and 3D orthogonal woven composites during short beam shear (SBS) test were analyzed using finite element (FE) analyses. Two kinds of 3D woven composites, containing single z-yarns and double z-yarns, were considered. The FE models were guided by experimental observations from SBS tests for the same material systems. A series of mechanisms including creation and evolution of matrix cracks and delaminations were modeled discretely. The force-displacement curves obtained from the FE simulations were compared with those from experiments. Further parametric studies were conducted to investigate the effects of z-yarns and interlaminar fracture… More >

Displaying 171-180 on page 18 of 194. Per Page