Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (176)
  • Open Access


    Analyzing COVID-19 Discourse on Twitter: Text Clustering and Classification Models for Public Health Surveillance

    Pakorn Santakij1, Samai Srisuay2,*, Pongporn Punpeng1

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 665-689, 2024, DOI:10.32604/csse.2024.045066

    Abstract Social media has revolutionized the dissemination of real-life information, serving as a robust platform for sharing life events. Twitter, characterized by its brevity and continuous flow of posts, has emerged as a crucial source for public health surveillance, offering valuable insights into public reactions during the COVID-19 pandemic. This study aims to leverage a range of machine learning techniques to extract pivotal themes and facilitate text classification on a dataset of COVID-19 outbreak-related tweets. Diverse topic modeling approaches have been employed to extract pertinent themes and subsequently form a dataset for training text classification models.… More >

  • Open Access


    A Review of NILM Applications with Machine Learning Approaches

    Maheesha Dhashantha Silva*, Qi Liu

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2971-2989, 2024, DOI:10.32604/cmc.2024.051289

    Abstract In recent years, Non-Intrusive Load Monitoring (NILM) has become an emerging approach that provides affordable energy management solutions using aggregated load obtained from a single smart meter in the power grid. Furthermore, by integrating Machine Learning (ML), NILM can efficiently use electrical energy and offer less of a burden for the energy monitoring process. However, conducted research works have limitations for real-time implementation due to the practical issues. This paper aims to identify the contribution of ML approaches to developing a reliable Energy Management (EM) solution with NILM. Firstly, phases of the NILM are discussed,… More >

  • Open Access


    FusionNN: A Semantic Feature Fusion Model Based on Multimodal for Web Anomaly Detection

    Li Wang1,2,3,*, Mingshan Xia1,2,*, Hao Hu1, Jianfang Li1,2, Fengyao Hou1,2, Gang Chen1,2,3

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2991-3006, 2024, DOI:10.32604/cmc.2024.048637

    Abstract With the rapid development of the mobile communication and the Internet, the previous web anomaly detection and identification models were built relying on security experts’ empirical knowledge and attack features. Although this approach can achieve higher detection performance, it requires huge human labor and resources to maintain the feature library. In contrast, semantic feature engineering can dynamically discover new semantic features and optimize feature selection by automatically analyzing the semantic information contained in the data itself, thus reducing dependence on prior knowledge. However, current semantic features still have the problem of semantic expression singularity, as… More >

  • Open Access


    A Study on Enhancing Chip Detection Efficiency Using the Lightweight Van-YOLOv8 Network

    Meng Huang, Honglei Wei*, Xianyi Zhai

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 531-547, 2024, DOI:10.32604/cmc.2024.048510

    Abstract In pursuit of cost-effective manufacturing, enterprises are increasingly adopting the practice of utilizing recycled semiconductor chips. To ensure consistent chip orientation during packaging, a circular marker on the front side is employed for pin alignment following successful functional testing. However, recycled chips often exhibit substantial surface wear, and the identification of the relatively small marker proves challenging. Moreover, the complexity of generic target detection algorithms hampers seamless deployment. Addressing these issues, this paper introduces a lightweight YOLOv8s-based network tailored for detecting markings on recycled chips, termed Van-YOLOv8. Initially, to alleviate the influence of diminutive, low-resolution… More >

  • Open Access


    Sepsis Prediction Using CNNBDLSTM and Temporal Derivatives Feature Extraction in the IoT Medical Environment

    Sapiah Sakri1, Shakila Basheer1, Zuhaira Muhammad Zain1, Nurul Halimatul Asmak Ismail2,*, Dua’ Abdellatef Nassar1, Manal Abdullah Alohali1, Mais Ayman Alharaki1

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1157-1185, 2024, DOI:10.32604/cmc.2024.048051

    Abstract Background: Sepsis, a potentially fatal inflammatory disease triggered by infection, carries significant health implications worldwide. Timely detection is crucial as sepsis can rapidly escalate if left undetected. Recent advancements in deep learning (DL) offer powerful tools to address this challenge. Aim: Thus, this study proposed a hybrid CNNBDLSTM, a combination of a convolutional neural network (CNN) with a bi-directional long short-term memory (BDLSTM) model to predict sepsis onset. Implementing the proposed model provides a robust framework that capitalizes on the complementary strengths of both architectures, resulting in more accurate and timelier predictions. Method: The sepsis prediction… More >

  • Open Access


    A Lightweight Network with Dual Encoder and Cross Feature Fusion for Cement Pavement Crack Detection

    Zhong Qu1,*, Guoqing Mu1, Bin Yuan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 255-273, 2024, DOI:10.32604/cmes.2024.048175

    Abstract Automatic crack detection of cement pavement chiefly benefits from the rapid development of deep learning, with convolutional neural networks (CNN) playing an important role in this field. However, as the performance of crack detection in cement pavement improves, the depth and width of the network structure are significantly increased, which necessitates more computing power and storage space. This limitation hampers the practical implementation of crack detection models on various platforms, particularly portable devices like small mobile devices. To solve these problems, we propose a dual-encoder-based network architecture that focuses on extracting more comprehensive fracture feature… More > Graphic Abstract

    A Lightweight Network with Dual Encoder and Cross Feature Fusion for Cement Pavement Crack Detection

  • Open Access


    A Web Application Fingerprint Recognition Method Based on Machine Learning

    Yanmei Shi1, Wei Yu2,*, Yanxia Zhao3,*, Yungang Jia4

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 887-906, 2024, DOI:10.32604/cmes.2024.046140

    Abstract Web application fingerprint recognition is an effective security technology designed to identify and classify web applications, thereby enhancing the detection of potential threats and attacks. Traditional fingerprint recognition methods, which rely on preannotated feature matching, face inherent limitations due to the ever-evolving nature and diverse landscape of web applications. In response to these challenges, this work proposes an innovative web application fingerprint recognition method founded on clustering techniques. The method involves extensive data collection from the Tranco List, employing adjusted feature selection built upon Wappalyzer and noise reduction through truncated SVD dimensionality reduction. The core… More >

  • Open Access


    The Influence of Air Pollution Concentrations on Solar Irradiance Forecasting Using CNN-LSTM-mRMR Feature Extraction

    Ramiz Gorkem Birdal*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4015-4028, 2024, DOI:10.32604/cmc.2024.048324

    Abstract Maintaining a steady power supply requires accurate forecasting of solar irradiance, since clean energy resources do not provide steady power. The existing forecasting studies have examined the limited effects of weather conditions on solar radiation such as temperature and precipitation utilizing convolutional neural network (CNN), but no comprehensive study has been conducted on concentrations of air pollutants along with weather conditions. This paper proposes a hybrid approach based on deep learning, expanding the feature set by adding new air pollution concentrations, and ranking these features to select and reduce their size to improve efficiency. In… More >

  • Open Access


    Study on Image Recognition Algorithm for Residual Snow and Ice on Photovoltaic Modules

    Yongcan Zhu1,2, Jiawen Wang1, Ye Zhang1,2, Long Zhao1, Botao Jiang1, Xinbo Huang1,*

    Energy Engineering, Vol.121, No.4, pp. 895-911, 2024, DOI:10.32604/ee.2023.041002

    Abstract The accumulation of snow and ice on PV modules can have a detrimental impact on power generation, leading to reduced efficiency for prolonged periods. Thus, it becomes imperative to develop an intelligent system capable of accurately assessing the extent of snow and ice coverage on PV modules. To address this issue, the article proposes an innovative ice and snow recognition algorithm that effectively segments the ice and snow areas within the collected images. Furthermore, the algorithm incorporates an analysis of the morphological characteristics of ice and snow coverage on PV modules, allowing for the establishment… More >

  • Open Access


    DGConv: A Novel Convolutional Neural Network Approach for Weld Seam Depth Image Detection

    Pengchao Li1,2,3,*, Fang Xu1,2,3,4, Jintao Wang1,2, Haibing Guo4, Mingmin Liu4, Zhenjun Du4

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1755-1771, 2024, DOI:10.32604/cmc.2023.047057

    Abstract We propose a novel image segmentation algorithm to tackle the challenge of limited recognition and segmentation performance in identifying welding seam images during robotic intelligent operations. Initially, to enhance the capability of deep neural networks in extracting geometric attributes from depth images, we developed a novel deep geometric convolution operator (DGConv). DGConv is utilized to construct a deep local geometric feature extraction module, facilitating a more comprehensive exploration of the intrinsic geometric information within depth images. Secondly, we integrate the newly proposed deep geometric feature module with the Fully Convolutional Network (FCN8) to establish a… More >

Displaying 1-10 on page 1 of 176. Per Page