Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    ARTICLE

    Accurate Location Prediction of Social‐Users Using mHMM

    Ahsan Hussain, Bettahally N. Keshavamurthy, Ravi Prasad K. Jagannath

    Intelligent Automation & Soft Computing, Vol.25, No.3, pp. 473-486, 2019, DOI:10.31209/2018.11007092

    Abstract Prediction space of distinct check-in locations in Location-Based Social Networks is a challenge. In this paper, a thorough analysis of Foursquare Check-ins is done. Based on previous check-in sequences, next location of social-users is accurately predicted using multinomial-Hidden Markov Model (mHMM) with Steady-State probabilities. This information benefits security-agencies in tracking suspects and restaurant-owners to predict their customers’ arrivals at different venues on given days. Higher accuracy and Steady-State venuepopularities obtained for location-prediction using the proposed method, outperform various other baseline methods. More >

  • Open Access

    ARTICLE

    Modified Viterbi Scoring for HMM‐Based Speech Recognition

    Jihyuck Joa, Han‐Gyu Kimb, In‐Cheol Parka, Bang Chul Jungc, Hoyoung Yooc

    Intelligent Automation & Soft Computing, Vol.25, No.2, pp. 351-358, 2019, DOI:10.31209/2019.100000096

    Abstract A modified Viterbi scoring procedure is presented in this paper based on Dijkstra’s shortest-path algorithm. In HMM-based speech recognition systems, the Viterbi scoring plays a significant role in finding the best matching model, but its computational complexity is linearly proportional to the number of reference models and their states. Therefore, the complexity is serious in implementing a high-speed speech recognition system. In the proposed method, the Viterbi scoring is translated into the searching of a minimum path, and the shortest-path algorithm is exploited to decrease the computational complexity while preventing the recognition accuracy from deteriorating. More >

  • Open Access

    ARTICLE

    A Face Recognition Algorithm Based on LBP-EHMM

    Tao Li1, Lingyun Wang1, Yin Chen1,*, Yongjun Ren1, Lei Wang1, Jinyue Xia2

    Journal on Artificial Intelligence, Vol.1, No.2, pp. 59-68, 2019, DOI:10.32604/jai.2019.06346

    Abstract In order to solve the problem that real-time face recognition is susceptible to illumination changes, this paper proposes a face recognition method that combines Local Binary Patterns (LBP) and Embedded Hidden Markov Model (EHMM). Face recognition method. The method firstly performs LBP preprocessing on the input face image, then extracts the feature vector, and finally sends the extracted feature observation vector to the EHMM for training or recognition. Experiments on multiple face databases show that the proposed algorithm is robust to illumination and improves recognition rate. More >

Displaying 11-20 on page 2 of 13. Per Page