Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    Experimental Study on Flow and Heat Transfer Characteristics of Nanofluids in a Triangular Tube at Different Rotation Angles

    Cong Qi1,2,*, Chengchao Wang1,2, Jinghua Tang1,2, Dongtai Han2

    Energy Engineering, Vol.117, No.2, pp. 63-78, 2020, DOI:10.32604/EE.2020.010433 - 23 April 2020

    Abstract Because of the poor thermal performance of ordinary tubes, a triangular tube was used to replace the smooth channel in the heat transfer system, and nanofluids were used to take the place of ordinary fluids as the heat transfer medium. High stability nanofluids were prepared, and an experimental set on flow and heat exchange was established. Effects of triangular tube rotation angles (α = 0°, 30°, 60°) as well as mass fractions of nanofluids (ω = 0.1%, 0.3%, 0.5%) on heat exchange and flow performance were experimentally considered at Reynolds numbers (Re = 800–8000). It… More >

  • Open Access

    ARTICLE

    FLOW AND HEAT TRANSFER CHARACTERISTICS OF AIR IN SQUARE CHANNEL HEAT EXCHANGER WITH C-SHAPED BAFFLE: A NUMERICAL STUDY

    Amnart Boonloia, Withada Jedsadaratanachaib,*

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-18, 2019, DOI:10.5098/hmt.13.23

    Abstract The purpose of the present work is to study flow configuration and heat transfer behavior in a square channel heat exchanger equipped with C-shaped baffle. The influences of flow attack angle and baffle size on flow and heat transfer characteristics are considered for the laminar flow regime with the Reynolds number around 100 – 2000. The numerical study with finite volume method is selected for the present investigation. The SIMPLE algorithms is opted to solve the numerical problem. The numerical results are concluded in terms of flow and heat transfer mechanisms in the tested section.… More >

  • Open Access

    ABSTRACT

    Numerical Simulation on Dynamics and Heat Transfer Characteristics of Granulated Molten Slag Particle by Air with Moisture

    Yiming Fan1,2, Jingfu Wang1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.3, pp. 167-167, 2019, DOI:10.32604/icces.2019.05590

    Abstract In order to investigate the dynamics and heat transfer characteristics of granulated molten blast furnace slag by blast air, a mathematical model for the dynamics and heat transfer of high temperature molten slag granulated by gas was established and solved through the fourth order Runge-Kutta algorithm, the calculation program was compiled by FORTRAN. Considering that the efficiency of air cooling is low, a method of spray cooling was presented to improve the cooling rate. And the effect of varied particle size on movement and cooling was also researched. The variation of main thermal physical properties… More >

  • Open Access

    ARTICLE

    EXPERIMENTS ON HEAT TRANSFER CHARACTERISTICS OF SHEARDRIVEN LIQUID FILM IN CO-CURRENT GAS FLOW

    Tomoki Hirokawaa,*, Masahiko Murozonoa, Oleg Kabovb,c, Haruhiko Ohtaa

    Frontiers in Heat and Mass Transfer, Vol.5, pp. 1-8, 2014, DOI:10.5098/hmt.5.17

    Abstract Experiments are performed to study the liquid film behavior and corresponding local heat transfer to shear-driven liquid film flow of water in the cocurrent nitrogen gas flow. The heated channel has a cross section of 30mm in width and 5mm in height, where the bottom is operated as a heating surface of 30mm in width and 100mm in length. The heated section is divided into segments to evaluate the local heat transfer coefficients. Under most gas Reynolds numbers, the local heat transfer coefficients are increased with increasing heat flux, where three mechanisms are important; (i) More >

Displaying 21-30 on page 3 of 24. Per Page