Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access


    The Effects of Turbulence Intensity and Tip Speed Ratio on the Coherent Structure of Horizontal-Axis Wind Turbine Wake: A Wind Tunnel Experiment

    Yuxia Han1,2, Jianwen Wang1,2,*, Xin Li3, Xueqing Dong1,2, Caifeng Wen1,2

    Energy Engineering, Vol.119, No.6, pp. 2297-2317, 2022, DOI:10.32604/ee.2022.020858

    Abstract The evolution laws of the large-eddy coherent structure of the wind turbine wake have been evaluated via wind tunnel experiments under uniform and turbulent inflow conditions. The spatial correlation coefficients, the turbulence integral scales and power spectrum are obtained at different tip speed ratios (TSRs) based on the time-resolved particle image velocity (TR-PIV) technique. The results indicate that the large-eddy coherent structures are more likely to dissipate with an increase in turbulence intensity and TSR. Furthermore, the spatial correlation of the longitudinal pulsation velocity is greater than its axial counterpart, resulting into a wake turbulence dominated by the longitudinal pulsation.… More >

  • Open Access


    Research on the Change of Airfoil Geometric Parameters of Horizontal Axis Wind Turbine Blades Caused by Atmospheric Icing

    Xiyang Li1, Yuhao Jia2, Hui Zhang1,*, Bin Cheng1

    Energy Engineering, Vol.119, No.6, pp. 2549-2567, 2022, DOI:10.32604/ee.2022.020854

    Abstract Icing can significantly change the geometric parameters of wind turbine blades, which in turn, can reduce the aerodynamic characteristics of the airfoil. In-depth research is conducted in this study to identify the reasons for the decline of wind power equipment performance through the icing process. An accurate experimental test method is proposed in a natural environment that examines the growth and distribution of ice formation over the airfoil profile. The mathematical models of the airfoil chord length, camber, and thickness are established in order to investigate the variation of geometric airfoil parameters under different icing states. The results show that… More >

  • Open Access


    Analysis of Near-Wake Deflection Characteristics of Horizontal Axis Wind Turbine Tower under Yaw State

    Zhen Liu1,3, Jianwen Wang1,2,*, Fuzhong Bai3, Caifeng Wen1,2, Yunchao Du1

    Energy Engineering, Vol.118, No.6, pp. 1627-1640, 2021, DOI:10.32604/EE.2021.016357

    Abstract The yaw of the horizontal axis wind turbine results in the deflection of the wake flow field of the tower. The reasonable layout of wind farm can reduce the power loss of the downstream wind turbine generators due to the blocking effect of the upstream wake flow and increase the output power of the whole wind farm. However, there is still much space for further research. In this paper, experimental research is conducted on the near-wake deflection characteristics of wind turbine tower under yaw state, expecting the effect of throwing away a brick in order to get a gem. In… More >

  • Open Access


    Kriging Surrogate-Based Genetic Algorithm Optimization for Blade Design of a Horizontal Axis Wind Turbine

    Nantiwat Pholdee1, Sujin Bureerat1, Weerapon Nuantong2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.1, pp. 261-273, 2021, DOI:10.32604/cmes.2021.012349

    Abstract Horizontal axis wind turbines are some of the most widely used clean energy generators in the world. Horizontal axis wind turbine blades need to be designed for optimization in order to maximize efficiency and simultaneously minimize the cost of energy. This work presents the optimization of new MEXICO blades for a horizontal axis wind turbine at the wind speed of 10 m/s. The optimization problem is posed to maximize the power coefficient while the design variables are twist angles on the blade radius and rotating axis positions on a chord length of the airfoils. Computational fluid dynamics was used for… More >

Displaying 1-10 on page 1 of 4. Per Page