Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (60)
  • Open Access

    ARTICLE

    Machine Learning Enabled Novel Real-Time IoT Targeted DoS/DDoS Cyber Attack Detection System

    Abdullah Alabdulatif1, Navod Neranjan Thilakarathne2,*, Mohamed Aashiq3,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3655-3683, 2024, DOI:10.32604/cmc.2024.054610 - 12 September 2024

    Abstract The increasing prevalence of Internet of Things (IoT) devices has introduced a new phase of connectivity in recent years and, concurrently, has opened the floodgates for growing cyber threats. Among the myriad of potential attacks, Denial of Service (DoS) attacks and Distributed Denial of Service (DDoS) attacks remain a dominant concern due to their capability to render services inoperable by overwhelming systems with an influx of traffic. As IoT devices often lack the inherent security measures found in more mature computing platforms, the need for robust DoS/DDoS detection systems tailored to IoT is paramount for… More >

  • Open Access

    ARTICLE

    Detection of Real-Time Distributed Denial-of-Service (DDoS) Attacks on Internet of Things (IoT) Networks Using Machine Learning Algorithms

    Zaed Mahdi1,*, Nada Abdalhussien2, Naba Mahmood1, Rana Zaki3,*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2139-2159, 2024, DOI:10.32604/cmc.2024.053542 - 15 August 2024

    Abstract The primary concern of modern technology is cyber attacks targeting the Internet of Things. As it is one of the most widely used networks today and vulnerable to attacks. Real-time threats pose with modern cyber attacks that pose a great danger to the Internet of Things (IoT) networks, as devices can be monitored or service isolated from them and affect users in one way or another. Securing Internet of Things networks is an important matter, as it requires the use of modern technologies and methods, and real and up-to-date data to design and train systems… More >

  • Open Access

    REVIEW

    AI-Driven Learning Management Systems: Modern Developments, Challenges and Future Trends during the Age of ChatGPT

    Sameer Qazi1,*, Muhammad Bilal Kadri2, Muhammad Naveed1,*, Bilal A. Khawaja3, Sohaib Zia Khan4, Muhammad Mansoor Alam5,6,7, Mazliham Mohd Su’ud6

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3289-3314, 2024, DOI:10.32604/cmc.2024.048893 - 15 August 2024

    Abstract COVID-19 pandemic restrictions limited all social activities to curtail the spread of the virus. The foremost and most prime sector among those affected were schools, colleges, and universities. The education system of entire nations had shifted to online education during this time. Many shortcomings of Learning Management Systems (LMSs) were detected to support education in an online mode that spawned the research in Artificial Intelligence (AI) based tools that are being developed by the research community to improve the effectiveness of LMSs. This paper presents a detailed survey of the different enhancements to LMSs, which… More >

  • Open Access

    REVIEW

    IoMT-Based Healthcare Systems: A Review

    Tahir Abbas1,*, Ali Haider Khan2, Khadija Kanwal3, Ali Daud4,*, Muhammad Irfan5, Amal Bukhari6, Riad Alharbey6

    Computer Systems Science and Engineering, Vol.48, No.4, pp. 871-895, 2024, DOI:10.32604/csse.2024.049026 - 17 July 2024

    Abstract The integration of the Internet of Medical Things (IoMT) and the Internet of Things (IoT), which has revolutionized patient care through features like remote critical care and real-time therapy, is examined in this study in response to the changing healthcare landscape. Even with these improvements, security threats are associated with the increased connectivity of medical equipment, which calls for a thorough assessment. With a primary focus on addressing security and performance enhancement challenges, the research classifies current IoT communication devices, examines their applications in IoMT, and investigates important aspects of IoMT devices in healthcare. The More >

  • Open Access

    ARTICLE

    Vector Dominance with Threshold Searchable Encryption (VDTSE) for the Internet of Things

    Jingjing Nie1,*, Zhenhua Chen2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4763-4779, 2024, DOI:10.32604/cmc.2024.051181 - 20 June 2024

    Abstract The Internet of Medical Things (IoMT) is an application of the Internet of Things (IoT) in the medical field. It is a cutting-edge technique that connects medical sensors and their applications to healthcare systems, which is essential in smart healthcare. However, Personal Health Records (PHRs) are normally kept in public cloud servers controlled by IoMT service providers, so privacy and security incidents may be frequent. Fortunately, Searchable Encryption (SE), which can be used to execute queries on encrypted data, can address the issue above. Nevertheless, most existing SE schemes cannot solve the vector dominance threshold… More >

  • Open Access

    ARTICLE

    Exploring Multi-Task Learning for Forecasting Energy-Cost Resource Allocation in IoT-Cloud Systems

    Mohammad Aldossary1,*, Hatem A. Alharbi2, Nasir Ayub3

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4603-4620, 2024, DOI:10.32604/cmc.2024.050862 - 20 June 2024

    Abstract Cloud computing has become increasingly popular due to its capacity to perform computations without relying on physical infrastructure, thereby revolutionizing computer processes. However, the rising energy consumption in cloud centers poses a significant challenge, especially with the escalating energy costs. This paper tackles this issue by introducing efficient solutions for data placement and node management, with a clear emphasis on the crucial role of the Internet of Things (IoT) throughout the research process. The IoT assumes a pivotal role in this study by actively collecting real-time data from various sensors strategically positioned in and around… More >

  • Open Access

    ARTICLE

    Design Pattern and Challenges of Federated Learning with Applications in Industrial Control System

    Hina Batool1, Jiuyun Xu1,*, Ateeq Ur Rehman2, Habib Hamam3,4,5,6

    Journal on Artificial Intelligence, Vol.6, pp. 105-128, 2024, DOI:10.32604/jai.2024.049912 - 06 May 2024

    Abstract Federated Learning (FL) appeared as an encouraging approach for handling decentralized data. Creating a FL system needs both machine learning (ML) knowledge and thinking about how to design system software. Researchers have focused a lot on the ML side of FL, but have not paid enough attention to designing the software architecture. So, in this survey, a set of design patterns is described to tackle the design issues. Design patterns are like reusable solutions for common problems that come up when designing software architecture. This paper focuses on (1) design patterns such as architectures, frameworks,… More >

  • Open Access

    ARTICLE

    Efficient and Secure IoT Based Smart Home Automation Using Multi-Model Learning and Blockchain Technology

    Nazik Alturki1, Raed Alharthi2, Muhammad Umer3,*, Oumaima Saidani1, Amal Alshardan1, Reemah M. Alhebshi4, Shtwai Alsubai5, Ali Kashif Bashir6,7,8,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3387-3415, 2024, DOI:10.32604/cmes.2023.044700 - 11 March 2024

    Abstract The concept of smart houses has grown in prominence in recent years. Major challenges linked to smart homes are identification theft, data safety, automated decision-making for IoT-based devices, and the security of the device itself. Current home automation systems try to address these issues but there is still an urgent need for a dependable and secure smart home solution that includes automatic decision-making systems and methodical features. This paper proposes a smart home system based on ensemble learning of random forest (RF) and convolutional neural networks (CNN) for programmed decision-making tasks, such as categorizing gadgets… More >

  • Open Access

    ARTICLE

    Traffic-Aware Fuzzy Classification Model to Perform IoT Data Traffic Sourcing with the Edge Computing

    Huixiang Xu*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2309-2335, 2024, DOI:10.32604/cmc.2024.046253 - 27 February 2024

    Abstract The Internet of Things (IoT) has revolutionized how we interact with and gather data from our surrounding environment. IoT devices with various sensors and actuators generate vast amounts of data that can be harnessed to derive valuable insights. The rapid proliferation of Internet of Things (IoT) devices has ushered in an era of unprecedented data generation and connectivity. These IoT devices, equipped with many sensors and actuators, continuously produce vast volumes of data. However, the conventional approach of transmitting all this data to centralized cloud infrastructures for processing and analysis poses significant challenges. However, transmitting… More >

  • Open Access

    ARTICLE

    Blockchain-Based Cognitive Computing Model for Data Security on a Cloud Platform

    Xiangmin Guo1,2, Guangjun Liang1,2,*, Jiayin Liu1,2, Xianyi Chen3,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3305-3323, 2023, DOI:10.32604/cmc.2023.044529 - 26 December 2023

    Abstract Cloud storage is widely used by large companies to store vast amounts of data and files, offering flexibility, financial savings, and security. However, information shoplifting poses significant threats, potentially leading to poor performance and privacy breaches. Blockchain-based cognitive computing can help protect and maintain information security and privacy in cloud platforms, ensuring businesses can focus on business development. To ensure data security in cloud platforms, this research proposed a blockchain-based Hybridized Data Driven Cognitive Computing (HD2C) model. However, the proposed HD2C framework addresses breaches of the privacy information of mixed participants of the Internet of… More >

Displaying 1-10 on page 1 of 60. Per Page