Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Deep Learning-Based Intrusion System for Vehicular Ad Hoc Networks

    Fei Li1, *, Jiayan Zhang1, Edward Szczerbicki2, Jiaqi Song1, Ruxiang Li 1, Renhong Diao1

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 653-681, 2020, DOI:10.32604/cmc.2020.011264

    Abstract The increasing use of the Internet with vehicles has made travel more convenient. However, hackers can attack intelligent vehicles through various technical loopholes, resulting in a range of security issues. Due to these security issues, the safety protection technology of the in-vehicle system has become a focus of research. Using the advanced autoencoder network and recurrent neural network in deep learning, we investigated the intrusion detection system based on the in-vehicle system. We combined two algorithms to realize the efficient learning of the vehicle’s boundary behavior and the detection of intrusive behavior. In order to More >

Displaying 1-10 on page 1 of 1. Per Page