Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    Probabilistic Graphical Model-Based Operational Reliability-Centric Design of Offshore Wind Farm Feeder Layouts

    Qiuyu Lu1, Yunqi Yan2, Yang Liu1, Ying Chen2,*, Yinguo Yang1, Tannan Xiao3, Guobing Wu1

    Energy Engineering, Vol.122, No.12, pp. 4799-4814, 2025, DOI:10.32604/ee.2025.069131 - 27 November 2025

    Abstract The rapid expansion of offshore wind energy necessitates robust and cost-effective electrical collector system (ECS) designs that prioritize lifetime operational reliability. Traditional optimization approaches often simplify reliability considerations or fail to holistically integrate them with economic and technical constraints. This paper introduces a novel, two-stage optimization framework for offshore wind farm (OWF) ECS planning that systematically incorporates reliability. The first stage employs Mixed-Integer Linear Programming (MILP) to determine an optimal radial network topology, considering linearized reliability approximations and geographical constraints. The second stage enhances this design by strategically placing tie-lines using a Mixed-Integer Quadratically Constrained More >

  • Open Access

    ARTICLE

    Probabilistic Rock Slope Stability Assessment of Heterogeneous Pyroclastic Slopes Considering Collapse Using Monte Carlo Methodology

    Miguel A. Millán1,*, Rubén A. Galindo2, Fausto Molina-Gómez1

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 2923-2941, 2025, DOI:10.32604/cmes.2025.069356 - 30 September 2025

    Abstract Volcanic terrains exhibit a complex structure of pyroclastic deposits interspersed with sedimentary processes, resulting in irregular lithological sequences that lack lateral continuity and distinct stratigraphic patterns. This complexity poses significant challenges for slope stability analysis, requiring the development of specialized techniques to address these issues. This research presents a numerical methodology that incorporates spatial variability, nonlinear material characterization, and probabilistic analysis using a Monte Carlo framework to address this issue. The heterogeneous structure is represented by randomly assigning different lithotypes across the slope, while maintaining predefined global proportions. This contrasts with the more common approach… More >

  • Open Access

    ARTICLE

    Investigating Techniques to Optimise the Layout of Turbines in a Windfarm Using a Quantum Computer

    James Hancock*, Matthew Craven, Craig McNeile, Davide Vadacchino

    Journal of Quantum Computing, Vol.7, pp. 55-79, 2025, DOI:10.32604/jqc.2025.068127 - 11 August 2025

    Abstract This paper investigates Windfarm Layout Optimization (WFLO), where we formulate turbine placement considering wake effects as a Quadratic Unconstrained Binary Optimization (QUBO) problem. Wind energy plays a critical role in the transition toward sustainable power systems, but the optimal placement of turbines remains a challenging combinatorial problem due to complex wake interactions. With recent advances in quantum computing, there is growing interest in exploring whether hybrid quantum-classical methods can provide advantages for such computationally intensive tasks. We investigate solving the resulting QUBO problem using the Variational Quantum Eigensolver (VQE) implemented on Qiskit’s quantum computer simulator, More >

  • Open Access

    ARTICLE

    GNN Representation Learning and Multi-Objective Variable Neighborhood Search Algorithm for Wind Farm Layout Optimization

    Yingchao Li1,*, Jianbin Wang1, Haibin Wang2

    Energy Engineering, Vol.121, No.4, pp. 1049-1065, 2024, DOI:10.32604/ee.2023.045228 - 26 March 2024

    Abstract With the increasing demand for electrical services, wind farm layout optimization has been one of the biggest challenges that we have to deal with. Despite the promising performance of the heuristic algorithm on the route network design problem, the expressive capability and search performance of the algorithm on multi-objective problems remain unexplored. In this paper, the wind farm layout optimization problem is defined. Then, a multi-objective algorithm based on Graph Neural Network (GNN) and Variable Neighborhood Search (VNS) algorithm is proposed. GNN provides the basis representations for the following search algorithm so that the expressiveness… More >

  • Open Access

    ARTICLE

    On Layout Optimization of Wireless Sensor Network Using Meta-Heuristic Approach

    Abeeda Akram1, Kashif Zafar1, Adnan Noor Mian2, Abdul Rauf Baig3, Riyad Almakki3, Lulwah AlSuwaidan3, Shakir Khan3,4,*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3685-3701, 2023, DOI:10.32604/csse.2023.032024 - 03 April 2023

    Abstract One of the important research issues in wireless sensor networks (WSNs) is the optimal layout designing for the deployment of sensor nodes. It directly affects the quality of monitoring, cost, and detection capability of WSNs. Layout optimization is an NP-hard combinatorial problem, which requires optimization of multiple competing objectives like cost, coverage, connectivity, lifetime, load balancing, and energy consumption of sensor nodes. In the last decade, several meta-heuristic optimization techniques have been proposed to solve this problem, such as genetic algorithms (GA) and particle swarm optimization (PSO). However, these approaches either provided computationally expensive solutions… More >

  • Open Access

    ARTICLE

    A Spacecraft Equipment Layout Optimization Method for Diverse and Competitive Design

    Wei Cong, Yong Zhao*, Bingxiao Du*, Senlin Huo, Xianqi Chen

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 621-654, 2023, DOI:10.32604/cmes.2023.025143 - 05 January 2023

    Abstract The spacecraft equipment layout optimization design (SELOD) problems with complicated performance constraints and diversity are studied in this paper. The previous literature uses the gradient-based algorithm to obtain optimized non-overlap layout schemes from randomly initialized cases effectively. However, these local optimal solutions are too difficult to jump out of their current relative geometry relationships, significantly limiting their further improvement in performance indicators. Therefore, considering the geometric diversity of layout schemes is put forward to alleviate this limitation. First, similarity measures, including modified cosine similarity and gaussian kernel function similarity, are introduced into the layout optimization More >

  • Open Access

    ARTICLE

    Layout Optimization for Greenhouse WSN Based on Path Loss Analysis

    Huarui Wu1,2,3, Huaji Zhu1,2,3, Xiao Han1,2,3,*, Wei Xu4

    Computer Systems Science and Engineering, Vol.37, No.1, pp. 89-104, 2021, DOI:10.32604/csse.2021.015030 - 05 February 2021

    Abstract When wireless sensor networks (WSN) are deployed in the vegetable greenhouse with dynamic connectivity and interference environment, it is necessary to increase the node transmit power to ensure the communication quality, which leads to serious network interference. To offset the negative impact, the transmit power of other nodes must also be increased. The result is that the network becomes worse and worse, and node energy is wasted a lot. Taking into account the irregular connection range in the cucumber greenhouse WSN, we measured the transmission characteristics of wireless signals under the 2.4 Ghz operating frequency.… More >

  • Open Access

    ARTICLE

    CFD-Based Optimization of Hot Primary-Air Pipe Networks in Power Plant Milling Systems

    Qingyun Yan1, You Li2, Yuanhong Zhu3, Kui Cheng3, Xueli Huang3, Cong Qi3, Xuemin Ye2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.3, pp. 623-636, 2020, DOI:10.32604/fdmp.2020.09669 - 25 May 2020

    Abstract A hot primary-air pipe system is the bridge connecting an air-preheater with a coal mill in power generation stations. The effective geometrical configuration of the pipe network greatly affects the air flow distribution and consequently influences the safe and economic operation of milling systems in power stations. In order to improve the properties of the air flow, in the present work the SIMPLEC method is used to simulate numerically the flow field for the original layout of the system. As a result, the internal mechanisms influencing the uneven pressure drop in each branch are explored More >

Displaying 1-10 on page 1 of 8. Per Page