Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (156)
  • Open Access

    ARTICLE

    CloudViT: A Lightweight Ground-Based Cloud Image Classification Model with the Ability to Capture Global Features

    Daoming Wei1, Fangyan Ge2, Bopeng Zhang1, Zhiqiang Zhao3, Dequan Li3,*, Lizong Xi4, Jinrong Hu5,*, Xin Wang6

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5729-5746, 2025, DOI:10.32604/cmc.2025.061402 - 19 May 2025

    Abstract Accurate cloud classification plays a crucial role in aviation safety, climate monitoring, and localized weather forecasting. Current research has been focusing on machine learning techniques, particularly deep learning based model, for the types identification. However, traditional approaches such as convolutional neural networks (CNNs) encounter difficulties in capturing global contextual information. In addition, they are computationally expensive, which restricts their usability in resource-limited environments. To tackle these issues, we present the Cloud Vision Transformer (CloudViT), a lightweight model that integrates CNNs with Transformers. The integration enables an effective balance between local and global feature extraction. To… More >

  • Open Access

    ARTICLE

    A Lightweight IoT Data Security Sharing Scheme Based on Attribute-Based Encryption and Blockchain

    Hongliang Tian, Meiruo Li*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5539-5559, 2025, DOI:10.32604/cmc.2025.060297 - 19 May 2025

    Abstract The accelerated advancement of the Internet of Things (IoT) has generated substantial data, including sensitive and private information. Consequently, it is imperative to guarantee the security of data sharing. While facilitating fine-grained access control, Ciphertext Policy Attribute-Based Encryption (CP-ABE) can effectively ensure the confidentiality of shared data. Nevertheless, the conventional centralized CP-ABE scheme is plagued by the issues of key misuse, key escrow, and large computation, which will result in security risks. This paper suggests a lightweight IoT data security sharing scheme that integrates blockchain technology and CP-ABE to address the abovementioned issues. The integrity… More >

  • Open Access

    ARTICLE

    A Lightweight Convolutional Neural Network with Squeeze and Excitation Module for Security Authentication Using Wireless Channel

    Xiaoying Qiu1,*, Xiaoyu Ma1, Guangxu Zhao1, Jinwei Yu2, Wenbao Jiang1, Zhaozhong Guo1, Maozhi Xu3

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2025-2040, 2025, DOI:10.32604/cmc.2025.061869 - 16 April 2025

    Abstract Physical layer authentication (PLA) in the context of the Internet of Things (IoT) has gained significant attention. Compared with traditional encryption and blockchain technologies, PLA provides a more computationally efficient alternative to exploiting the properties of the wireless medium itself. Some existing PLA solutions rely on static mechanisms, which are insufficient to address the authentication challenges in fifth generation (5G) and beyond wireless networks. Additionally, with the massive increase in mobile device access, the communication security of the IoT is vulnerable to spoofing attacks. To overcome the above challenges, this paper proposes a lightweight deep More >

  • Open Access

    ARTICLE

    An Improved Lightweight Safety Helmet Detection Algorithm for YOLOv8

    Lieping Zhang1,2, Hao Ma1, Jiancheng Huang3, Cui Zhang4,*, Xiaolin Gao2

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2245-2265, 2025, DOI:10.32604/cmc.2025.061519 - 16 April 2025

    Abstract Detecting individuals wearing safety helmets in complex environments faces several challenges. These factors include limited detection accuracy and frequent missed or false detections. Additionally, existing algorithms often have excessive parameter counts, complex network structures, and high computational demands. These challenges make it difficult to deploy such models efficiently on resource-constrained devices like embedded systems. Aiming at this problem, this research proposes an optimized and lightweight solution called FGP-YOLOv8, an improved version of YOLOv8n. The YOLOv8 backbone network is replaced with the FasterNet model to reduce parameters and computational demands while local convolution layers are added.… More >

  • Open Access

    ARTICLE

    LMSA: A Lightweight Multi-Key Secure Aggregation Framework for Privacy-Preserving Healthcare AIoT

    Hyunwoo Park1,2, Jaedong Lee1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 827-847, 2025, DOI:10.32604/cmes.2025.061178 - 11 April 2025

    Abstract Integrating Artificial Intelligence of Things (AIoT) in healthcare offers transformative potential for real-time diagnostics and collaborative learning but presents critical challenges, including privacy preservation, computational efficiency, and regulatory compliance. Traditional approaches, such as differential privacy, homomorphic encryption, and secure multi-party computation, often fail to balance performance and privacy, rendering them unsuitable for resource-constrained healthcare AIoT environments. This paper introduces LMSA (Lightweight Multi-Key Secure Aggregation), a novel framework designed to address these challenges and enable efficient, secure federated learning across distributed healthcare institutions. LMSA incorporates three key innovations: (1) a lightweight multi-key management system leveraging Diffie-Hellman… More >

  • Open Access

    ARTICLE

    OD-YOLOv8: A Lightweight and Enhanced New Algorithm for Ship Detection

    Zhuowei Wang1,*, Dezhi Han1, Bing Han2, Zhongdai Wu2

    Computer Systems Science and Engineering, Vol.49, pp. 377-399, 2025, DOI:10.32604/csse.2025.059634 - 09 April 2025

    Abstract Synthetic Aperture Radar (SAR) has become one of the most effective tools in ship detection. However, due to significant background interference, small targets, and challenges related to target scattering intensity in SAR images, current ship target detection faces serious issues of missed detections and false positives, and the network structures are overly complex. To address this issue, this paper proposes a lightweight model based on YOLOv8, named OD-YOLOv8. Firstly, we adopt a simplified neural network architecture, VanillaNet, to replace the backbone network, significantly reducing the number of parameters and computational complexity while ensuring accuracy. Secondly,… More >

  • Open Access

    ARTICLE

    Lightweight Classroom Student Action Recognition Method Based on Spatiotemporal Multimodal Feature Fusion

    Shaodong Zou1, Di Wu1, Jianhou Gan1,2,*, Juxiang Zhou1,2, Jiatian Mei1,2

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 1101-1116, 2025, DOI:10.32604/cmc.2025.061376 - 26 March 2025

    Abstract The task of student action recognition in the classroom is to precisely capture and analyze the actions of students in classroom videos, providing a foundation for realizing intelligent and accurate teaching. However, the complex nature of the classroom environment has added challenges and difficulties in the process of student action recognition. In this research article, with regard to the circumstances where students are prone to be occluded and classroom computing resources are restricted in real classroom scenarios, a lightweight multi-modal fusion action recognition approach is put forward. This proposed method is capable of enhancing the… More >

  • Open Access

    ARTICLE

    An Efficient Instance Segmentation Based on Layer Aggregation and Lightweight Convolution

    Hui Jin1,2,*, Shuaiqi Xu1, Chengyi Duan1, Ruixue He1, Ji Zhang1

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 1041-1055, 2025, DOI:10.32604/cmc.2025.060304 - 26 March 2025

    Abstract Instance segmentation is crucial in various domains, such as autonomous driving and robotics. However, there is scope for improvement in the detection speed of instance-segmentation algorithms for edge devices. Therefore, it is essential to enhance detection speed while maintaining high accuracy. In this study, we propose you only look once-layer fusion (YOLO-LF), a lightweight instance segmentation method specifically designed to optimize the speed of instance segmentation for autonomous driving applications. Based on the You Only Look Once version 8 nano (YOLOv8n) framework, we introduce a lightweight convolutional module and design a lightweight layer aggregation module… More >

  • Open Access

    ARTICLE

    Enhanced Detection of APT Vector Lateral Movement in Organizational Networks Using Lightweight Machine Learning

    Mathew Nicho1,2,*, Oluwasegun Adelaiye3, Christopher D. McDermott4, Shini Girija5

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 281-308, 2025, DOI:10.32604/cmc.2025.059597 - 26 March 2025

    Abstract The successful penetration of government, corporate, and organizational IT systems by state and non-state actors deploying APT vectors continues at an alarming pace. Advanced Persistent Threat (APT) attacks continue to pose significant challenges for organizations despite technological advancements in artificial intelligence (AI)-based defense mechanisms. While AI has enhanced organizational capabilities for deterrence, detection, and mitigation of APTs, the global escalation in reported incidents, particularly those successfully penetrating critical government infrastructure has heightened concerns among information technology (IT) security administrators and decision-makers. Literature review has identified the stealthy lateral movement (LM) of malware within the initially… More >

  • Open Access

    ARTICLE

    GD-YOLO: A Network with Gather and Distribution Mechanism for Infrared Image Detection of Electrical Equipment

    Junpeng Wu1,2,*, Xingfan Jiang2

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 897-915, 2025, DOI:10.32604/cmc.2025.058714 - 26 March 2025

    Abstract As technologies related to power equipment fault diagnosis and infrared temperature measurement continue to advance, the classification and identification of infrared temperature measurement images have become crucial in effective intelligent fault diagnosis of various electrical equipment. In response to the increasing demand for sufficient feature fusion in current real-time detection and low detection accuracy in existing networks for Substation fault diagnosis, we introduce an innovative method known as Gather and Distribution Mechanism-You Only Look Once (GD-YOLO). Firstly, a partial convolution group is designed based on different convolution kernels. We combine the partial convolution group with… More >

Displaying 1-10 on page 1 of 156. Per Page