Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access


    Neuro-Based Higher Order Sliding Mode Control for Perturbed Nonlinear Systems

    Ahmed M. Elmogy1,2,*, Wael M. Elawady2

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 385-400, 2023, DOI:10.32604/iasc.2023.032349

    Abstract One of the great concerns when tackling nonlinear systems is how to design a robust controller that is able to deal with uncertainty. Many researchers have been working on developing such type of controllers. One of the most efficient techniques employed to develop such controllers is sliding mode control (SMC). However, the low order SMC suffers from chattering problem which harm the actuators of the control system and thus unsuitable to be used in many practical applications. In this paper, the drawbacks of low order traditional sliding mode control (FOTSMC) are resolved by presenting a… More >

  • Open Access


    Dynamic Sliding Mode Backstepping Control for Vertical Magnetic Bearing System

    Wei-Lung Mao1,*, Yu-Ying Chiu1, Chao-Ting Chu2, Bing-Hong Lin1, Jian-Jie Hung3

    Intelligent Automation & Soft Computing, Vol.32, No.2, pp. 923-936, 2022, DOI:10.32604/iasc.2022.019555

    Abstract Electromagnets are commonly used as support for machine components and parts in magnetic bearing systems (MBSs). Compared with conventional mechanical bearings, the magnetic bearings have less noise, friction, and vibration, but the magnetic force has a highly nonlinear relationship with the control current and the air gap. This research presents a dynamic sliding mode backstepping control (DSMBC) designed to track the height position of modeless vertical MBS. Because MBS is nonlinear with model uncertainty, the design of estimator should be able to solve the lumped uncertainty. The proposed DSMBC controller can not only stabilize the… More >

  • Open Access


    Position Control of Flexible Joint Carts Using Adaptive Generalized Dynamics Inversion

    Ibrahim M. Mehedi1,2,*, Mohd Heidir Mohd Shah1 , Soon Xin Ng3 , Abdulah Jeza Aljohani1,2, Mohammed El-Hajjar3, Muhammad Moinuddin1,2

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 4691-4705, 2022, DOI:10.32604/cmc.2022.020954


    This paper presents the design and implementation of Adaptive Generalized Dynamic Inversion (AGDI) to track the position of a Linear Flexible Joint Cart (LFJC) system along with vibration suppression of the flexible joint. The proposed AGDI control law will be comprised of two control elements. The baseline (continuous) control law is based on principle of conventional GDI approach and is established by prescribing the constraint dynamics of controlled state variables that reflect the control objectives. The control law is realized by inverting the prescribed dynamics using dynamically scaled Moore-Penrose generalized inversion. To boost the robust attributes

    More >

  • Open Access


    Synchronization of Robot Manipulators Actuated By Induction Motors with Velocity Estimator

    Felipe J. Torres1,*, Gerardo V. Guerrero2, Carlos D. García2, Ricardo Zavala-Yoe3, Mario A. García1, Adolfo R. López4

    CMES-Computer Modeling in Engineering & Sciences, Vol.121, No.2, pp. 609-630, 2019, DOI:10.32604/cmes.2019.07153

    Abstract A complete modeling (including the actuator dynamics) of a robot manipulator that uses three-phase induction motors is presented in this paper. A control scheme is designed to synchronize robot manipulators actuated by induction motors under a masterslave scheme in the case where the joint velocity of the slave robots is estimated. All of the research on the synchronization of robot manipulators assumes the use of ideal actuators to drive the joints; for that reason, in this work, a three-phase induction motor is considered to be a direct-drive actuator for each joint. An entire model of… More >

Displaying 1-10 on page 1 of 4. Per Page