Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (224)
  • Open Access

    ARTICLE

    Study of Ultraviolet Radiation Effect on the Mechanical Properties of Jute and Montmorillonite Nanoclay Reinforced Polyester Nanocomposites

    S. ARULMURUGANa,*, N. VENKATESHWARANa, S. KUMARa, P. CHANDRASEKARa

    Journal of Polymer Materials, Vol.40, No.1-2, pp. 83-91, 2023, DOI:10.32381/JPM.2023.40.1-2.7

    Abstract In this research, the effect of UV light on the mechanical properties of jute polymer nanocomposites was evaluated. Due to the fact that photodegradation is a surface process and is confined to the degradation of the mechanical characteristics of polyester resin, this study focuses on the resin quality. Therefore, test samples comprised of fibre-reinforced polyester nanoclay composites were fabricated different weight ratios of nanoclay. They were put through UV exposure in an Ultraviolet (UV) chamber. Tensile testing samples were made in accordance with ASTMD638 and had a minimum thickness of 3 mm. Additionally, specimens for Flexural and Impact testing were… More >

  • Open Access

    ARTICLE

    Impact on Mechanical Properties of Surface Treated Coconut Leaf Sheath Fiber/Sic Nano Particles Reinforced Phenol-formaldehyde Polymer Composites

    B. BRAILSON MANSINGH1, K. L. NARASIMHAMU2, K. C. VARAPRASAD3, J. S. BINOJ4,*, A. RADHAKRISHNAN5, ALAMRY ALI6

    Journal of Polymer Materials, Vol.40, No.1-2, pp. 71-82, 2023, DOI:10.32381/JPM.2023.40.1-2.6

    Abstract Several agro-wastes are rich in natural fibers and finds scope to be used as reinforcement in composite industry. These natural fibers have some advantages over man-made fibers, including low cost, light weight, renewable nature, high specific strength and modulus, and availability in various forms worldwide. In this paper, the effect of surface modification of leaf sheath coconut fiber (LSF) (an agro-waste) reinforced in phenol formaldehyde matrix composites with silicon carbide (SiC) nano particles as filler material were investigated for its mechanical characteristics. The investigation portrays that coconut LSF (CLSF) modified with potassium permanganate reinforced polymer composite with SiC nano particles… More >

  • Open Access

    ARTICLE

    The Influence of Acid on the Rock Mechanical Characteristics of Deep Shale in the Wujiaping Formation

    Hao Zhang1, Yan Zhang1,*, Wei Liu2, Ximin Zhang3, Xiang Liu2

    Energy Engineering, Vol.121, No.1, pp. 27-42, 2024, DOI:10.32604/ee.2023.041410

    Abstract The microscopic characteristics and mechanical properties of rocks change after the action of acid on deep shale, which affects the fracturing effect. Accordingly, we designed and conducted indoor experiments related to the changes in macro and microscopic characteristics after the interaction of acid with the shale of Wujiaping Formation, based on which the characteristic law of fracture volume modification after acid fracturing was studied using numerical simulation. The results demonstrate that the pores and fractures are enlarged and the structure is significantly loosened after the acid immersion. And a 15% concentration of hydrochloric acid can effectively dissolve shale. Furthermore, the… More >

  • Open Access

    PROCEEDINGS

    Development of Small Punch Test to Research the Mechanical Properties of Nuclear Fuel Cladding Tubes

    Huansheng Lai1,*, Xiaowei Jiang1, Yuntao Zhong2, Peinan Du2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09652

    Abstract Nuclear fuel cladding tubes have a outer diameter about 10 mm with a wall thickness about 0.5 mm. Their mechanical properties hence cannot be researched using standard test methods. In this study, small punch test (SPT) was developed to research the mechanical properties of nuclear fuel cladding tubes. Instead of plate SPT specimen, tube specimen was used to research fracture toughness and creep properties. Fninite elment simulation based on GTN model was used to verify the proposed method. Results indicated that the tube specimen with a noth can be sufficiently to research fracture toughness. The small punch creep test (SPCT)… More >

  • Open Access

    PROCEEDINGS

    Uniaxial Compressive Mechanical Properties of Three-Dimensional Graphene: Theoretical Models and Molecular Dynamics Simulations

    Xinliang Li1, Jiangang Guo1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-2, 2023, DOI:10.32604/icces.2023.09484

    Abstract As the first two-dimensional (2D) material discovered in experiments, graphene has attracted increasing attention from the scientific community [1]. And it possesses many superb mechanical, electronic and optical properties [2-4] due to its unique atomic structure. Its Young’s modulus and failure strength are 1TPa and 130GPa [5], respectively. Thus, 2D graphene has been extensively used in nanosensors and nanocomposites [6-8], etc. In order to fabricate graphene-based devices which inherit outstanding properties of 2D graphene, materials scientists are trying to use 2D graphene as building blocks to construct three-dimensional (3D) carbon nanomaterials, such as 3D graphene networks [9-11]. Nowadays, these 3D… More >

  • Open Access

    PROCEEDINGS

    Characterization of Mechanical Properties of CNFs and the Assembled Microfibers Through a Multi-scale Optimization-Based Inversion Method

    Shuaijun Wang1, Wenqiong Tu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09926

    Abstract Cellulose nanofibrils (CNFs) and the continuously assembled microfibers have shown transversely isotropic behavior in many studies. Due to fact that the size of CNFs and the assembled microfibers is at the nano and micro scale, respectively, the characterization of their mechanical properties is extremely challenge. That greatly hinders the accurate multi-scale modeling and design of CNFs-based materials. In our study, we have characterized the elastic constants of both CNFs microfibers and CNFs through a Multi-scale Optimization Inversion technology. Through the tensile test of CNFs microfibers reinforced resin with different volume fractions and the micromechanics model of microfibers reinforced resin, the… More >

  • Open Access

    ARTICLE

    Optical and Mechanical Properties of Ramie Fiber/Epoxy Resin Transparent Composites

    Chunhua Liu1, Dongfang Zou1, Qinqin Huang1, Shang Li2, Xia Zheng1, Xingong Li1,*

    Journal of Renewable Materials, Vol.11, No.10, pp. 3613-3624, 2023, DOI:10.32604/jrm.2023.028111

    Abstract The residual resources of ramie fiber-based textile products were used as raw materials. Ramie fiber felt (RF) was modified by NaClO2 aqueous solution and then impregnated with water-based epoxy resin (WER). RF/WER transparent composite materials were prepared by lamination hot pressing process. The composite materials’color difference, transmittance, haze, density, water absorption, and mechanical properties were determined to assess the effects of NaClO2 treatment and the number of ramie fiber layers on the properties of the prepared composites. The results showed significantly improved optical and mechanical properties of the RF/WER transparent composites after NaClO2 treatment. With the increase of ramie fiber… More > Graphic Abstract

    Optical and Mechanical Properties of Ramie Fiber/Epoxy Resin Transparent Composites

  • Open Access

    ARTICLE

    Effect of Multi-Hydroxyl Polymer-Treated MUF Resin on the Mechanical Properties of Particleboard Manufactured with Reed Straw

    Yuhui Huang1, Zhiyuan Yin1,2, Ming Liu1, Meng Li1, Yingfeng Zuo1, Yan Qing1, Yiqiang Wu1,*

    Journal of Renewable Materials, Vol.11, No.9, pp. 3417-3431, 2023, DOI:10.32604/jrm.2023.028511

    Abstract The poor bonding performance between aqueous adhesives represented by melamine-urea formaldehyde (MUF) resins and reed straw hinders their applications in the field of non-wood-based panels. Multi-hydroxyl polymers are highly reactive and are often used as crosslinkers. This study fabricated a resin with a strengthened cross-linked structure by combining a multi-hydroxyl polymer and MUF resin prepolymer. The reed particleboard was prepared by using this resin as an adhesive and reed stalk as the matrix. The results show that neighboring molecules combined to form C–O–C bonds that strengthened the cross-linked structure of the resin. In addition, the viscosity of the resin was… More >

  • Open Access

    ARTICLE

    Study on Mechanical Properties of High Fine Silty Basalt Fiber Shotcrete Based on Orthogonal Design

    Jinxing Wang1,2,3, Yingjie Yang1,2,3, Xiaolin Yang1,2,3, Huazhe Jiao1,2,3,4,*, Qi Wang1,2,3, Liuhua Yang1,2,3, Jianxin Yu1,2,3, Fengbin Chen1,2,3

    Journal of Renewable Materials, Vol.11, No.8, pp. 3351-3370, 2023, DOI:10.32604/jrm.2023.027512

    Abstract In order to improve the comprehensive utilization rate of high fines sand (HFS) produced by the mine, full solid waste shotcrete (HFS-BFRS) was prepared with HFS as fine aggregate in cooperation with basalt fiber (BF). The strength growth characteristics of HFS-BFRS were analyzed. And the fitting equation of compressive strength growth characteristics of HFS-BFRS under the synergistic effect of multiple factors was given. And based on the orthogonal experimental method, the effects on the compressive strength, splitting tensile strength and flexural strength of HFS-BFRS under the action of different levels of influencing factors were investigated. The effect of three factors… More >

  • Open Access

    ARTICLE

    Effect of Fibre Size on Mechanical Properties and Surface Roughness of PLA Composites by Using Fused Deposition Modelling (FDM)

    Aida Haryati Jamadi1, Nadlene Razali1,3,*, Sivakumar Dhar Malingam1,3, Mastura Mohammad Taha2,3

    Journal of Renewable Materials, Vol.11, No.8, pp. 3261-3276, 2023, DOI:10.32604/jrm.2023.028280

    Abstract Natural fibre as a reinforcing agent has been widely used in many industrial applications. Nevertheless, several factors need to be considered, such as the size and weight percentage of the fibre used in binding. Using fused deposition modelling (FDM), this factor was investigated by varying the size of natural fibre as the responding variable with a fixed weight percentage of kenaf fibre. The process of modifying the natural fibre in terms of size might increase the dispersion of kenaf fibre in the polymer matrix and increase the adhesion bonding between the fibre and matrix of composites, subsequently improving the interfacial… More >

Displaying 11-20 on page 2 of 224. Per Page