Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (228)
  • Open Access

    ARTICLE

    Enhancing the Performance of Polylactic Acid (PLA) Reinforcing with Sawdust, Rice Husk, and Bagasse Particles

    A. MADHAN KUMAR1, K. JAYAKUMAR2,*, M. SHALINI3

    Journal of Polymer Materials, Vol.39, No.3-4, pp. 269-281, 2022, DOI:10.32381/JPM.2022.39.3-4.7

    Abstract Polylactic acid (PLA) is the most popular thermoplastic biopolymer providing a stiffness and strength alternative to fossil-based plastics. It is also the most promising biodegradable polymer on the market right now, thus gaining a substitute for conservative artificial polymers. Therefore, the current research focuses on synthesizing and mechanical characterization of particlereinforced PLA composites. The hot compression molding technique was used to fabricate PLA-based composites with 0, 2.5, 5, and 7.5 weight % of sawdust, rice husk, and bagasse particle reinforcements to enhance the performance of the PLA. The pellets of PLA matrix were taken with… More >

  • Open Access

    ARTICLE

    Study of the Effect of UV-exposure on HDPE/Carbon Black Composite Floating Structure

    ALOK K. SAHUa, RAJSHREE VIJAYVARGIYAa, R. M. SARVIYAb

    Journal of Polymer Materials, Vol.39, No.3-4, pp. 183-193, 2022, DOI:10.32381/JPM.2022.39.3-4.1

    Abstract HDPE material is found to be best suited material for the manufacturing of floating bed structure for the solar photovoltaic (PV) system due to its light weight and excellent mechanical & chemical resistant properties. However, the major restriction in this regard is the limited engineering design and also the effect of UV radiations present in the natural environment that leads to the degradation of the plastic materials. Hence, in order to improve its UV stability carbon black is incorporated into it as UV resistant additive and hollow cubical floats of such HDPE/carbon black composite material… More >

  • Open Access

    ARTICLE

    Enhanced Mechanical and Electrical Properties of Styrene Butadiene Rubber Nanocomposites with Graphene Platelet Nano-powder

    ARUN KUMAR M, JAYAKUMARI LS*, RAMJI CHANDRAN

    Journal of Polymer Materials, Vol.40, No.3-4, pp. 141-156, 2023, DOI:10.32381/JPM.2023.40.3-4.2

    Abstract Nanocomposites are very important materials because it imparts superior properties than other composites with low level of filler loading. Styrene butadiene rubber (SBR) is a non-polar rubber which acts as an insulator and has low electrical conductivity. Graphene platelet nano-powder from 0.1 to 1.25 phr level is incorporated into SBR rubber in order to improve the electrical properties. Comparative studies on electrical and mechanical properties of styrene butadiene rubber with graphene platelet nano-powder (GPN) by varying the filler content are made. The incorporation of Graphene platelet nano-powder increases the electrical conductivity in styrene butadiene rubber. More >

  • Open Access

    ARTICLE

    Biodegradable and Biocompatible Polyvinyl alcohol/ Silk Fibroin-Based Composite with Improved Strength

    XINGMIN XU1, QINGQING SUN2, AIRONG XU2, XINBAO GUO2

    Journal of Polymer Materials, Vol.39, No.1-2, pp. 167-181, 2022, DOI:10.32381/JPM.2022.39.1-2.11

    Abstract Silk fibroin (SF) with renewability, biocompatibility and biodegradability shows potential application in various fields including biomedicine, tissue engineering, and wearable electronic devices. Herein, SF is used to exert effective reinforcement of polyvinyl alcohol (PVA) composite film to further improve its practicability. As such, PVA/SF composite films were prepared for the first time using a facile approach. The films were characterized to investigate possible interaction of PVA with SF. Meanwhile, systematic investigations have also been completed to explore the influences of PVA/SF mass ratio on the mechanical properties (tensile strength, elongation at break), biodegradability and biocompatibility, More >

  • Open Access

    ARTICLE

    Study of Ultraviolet Radiation Effect on the Mechanical Properties of Jute and Montmorillonite Nanoclay Reinforced Polyester Nanocomposites

    S. ARULMURUGANa,*, N. VENKATESHWARANa, S. KUMARa, P. CHANDRASEKARa

    Journal of Polymer Materials, Vol.40, No.1-2, pp. 83-91, 2023, DOI:10.32381/JPM.2023.40.1-2.7

    Abstract In this research, the effect of UV light on the mechanical properties of jute polymer nanocomposites was evaluated. Due to the fact that photodegradation is a surface process and is confined to the degradation of the mechanical characteristics of polyester resin, this study focuses on the resin quality. Therefore, test samples comprised of fibre-reinforced polyester nanoclay composites were fabricated different weight ratios of nanoclay. They were put through UV exposure in an Ultraviolet (UV) chamber. Tensile testing samples were made in accordance with ASTMD638 and had a minimum thickness of 3 mm. Additionally, specimens for… More >

  • Open Access

    ARTICLE

    Impact on Mechanical Properties of Surface Treated Coconut Leaf Sheath Fiber/Sic Nano Particles Reinforced Phenol-formaldehyde Polymer Composites

    B. BRAILSON MANSINGH1, K. L. NARASIMHAMU2, K. C. VARAPRASAD3, J. S. BINOJ4,*, A. RADHAKRISHNAN5, ALAMRY ALI6

    Journal of Polymer Materials, Vol.40, No.1-2, pp. 71-82, 2023, DOI:10.32381/JPM.2023.40.1-2.6

    Abstract Several agro-wastes are rich in natural fibers and finds scope to be used as reinforcement in composite industry. These natural fibers have some advantages over man-made fibers, including low cost, light weight, renewable nature, high specific strength and modulus, and availability in various forms worldwide. In this paper, the effect of surface modification of leaf sheath coconut fiber (LSF) (an agro-waste) reinforced in phenol formaldehyde matrix composites with silicon carbide (SiC) nano particles as filler material were investigated for its mechanical characteristics. The investigation portrays that coconut LSF (CLSF) modified with potassium permanganate reinforced polymer More >

  • Open Access

    ARTICLE

    The Influence of Acid on the Rock Mechanical Characteristics of Deep Shale in the Wujiaping Formation

    Hao Zhang1, Yan Zhang1,*, Wei Liu2, Ximin Zhang3, Xiang Liu2

    Energy Engineering, Vol.121, No.1, pp. 27-42, 2024, DOI:10.32604/ee.2023.041410

    Abstract The microscopic characteristics and mechanical properties of rocks change after the action of acid on deep shale, which affects the fracturing effect. Accordingly, we designed and conducted indoor experiments related to the changes in macro and microscopic characteristics after the interaction of acid with the shale of Wujiaping Formation, based on which the characteristic law of fracture volume modification after acid fracturing was studied using numerical simulation. The results demonstrate that the pores and fractures are enlarged and the structure is significantly loosened after the acid immersion. And a 15% concentration of hydrochloric acid can… More >

  • Open Access

    PROCEEDINGS

    Development of Small Punch Test to Research the Mechanical Properties of Nuclear Fuel Cladding Tubes

    Huansheng Lai1,*, Xiaowei Jiang1, Yuntao Zhong2, Peinan Du2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09652

    Abstract Nuclear fuel cladding tubes have a outer diameter about 10 mm with a wall thickness about 0.5 mm. Their mechanical properties hence cannot be researched using standard test methods. In this study, small punch test (SPT) was developed to research the mechanical properties of nuclear fuel cladding tubes. Instead of plate SPT specimen, tube specimen was used to research fracture toughness and creep properties. Fninite elment simulation based on GTN model was used to verify the proposed method. Results indicated that the tube specimen with a noth can be sufficiently to research fracture toughness. The More >

  • Open Access

    PROCEEDINGS

    Uniaxial Compressive Mechanical Properties of Three-Dimensional Graphene: Theoretical Models and Molecular Dynamics Simulations

    Xinliang Li1, Jiangang Guo1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-2, 2023, DOI:10.32604/icces.2023.09484

    Abstract As the first two-dimensional (2D) material discovered in experiments, graphene has attracted increasing attention from the scientific community [1]. And it possesses many superb mechanical, electronic and optical properties [2-4] due to its unique atomic structure. Its Young’s modulus and failure strength are 1TPa and 130GPa [5], respectively. Thus, 2D graphene has been extensively used in nanosensors and nanocomposites [6-8], etc. In order to fabricate graphene-based devices which inherit outstanding properties of 2D graphene, materials scientists are trying to use 2D graphene as building blocks to construct three-dimensional (3D) carbon nanomaterials, such as 3D graphene… More >

  • Open Access

    PROCEEDINGS

    Characterization of Mechanical Properties of CNFs and the Assembled Microfibers Through a Multi-scale Optimization-Based Inversion Method

    Shuaijun Wang1, Wenqiong Tu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09926

    Abstract Cellulose nanofibrils (CNFs) and the continuously assembled microfibers have shown transversely isotropic behavior in many studies. Due to fact that the size of CNFs and the assembled microfibers is at the nano and micro scale, respectively, the characterization of their mechanical properties is extremely challenge. That greatly hinders the accurate multi-scale modeling and design of CNFs-based materials. In our study, we have characterized the elastic constants of both CNFs microfibers and CNFs through a Multi-scale Optimization Inversion technology. Through the tensile test of CNFs microfibers reinforced resin with different volume fractions and the micromechanics model More >

Displaying 11-20 on page 2 of 228. Per Page