Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (81)
  • Open Access

    ARTICLE

    Data-Driven Prediction and Optimization of Mechanical Properties and Vibration Damping in Cast Iron–Granite-Epoxy Hybrid Composites

    Girish Hariharan1, Vinyas1, Gowrishankar Mandya Chennegowda1, Nitesh Kumar1, Shiva Kumar1, Deepak Doreswamy2, Subraya Krishna Bhat1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073772 - 12 January 2026

    Abstract This study presents a framework involving statistical modeling and machine learning to accurately predict and optimize the mechanical and damping properties of hybrid granite–epoxy (G–E) composites reinforced with cast iron (CI) filler particles. Hybrid G–E composite with added cast iron (CI) filler particles enhances stiffness, strength, and vibration damping, offering enhanced performance for vibration-sensitive engineering applications. Unlike conventional approaches, this work simultaneously employs Artificial Neural Networks (ANN) for high-accuracy property prediction and Response Surface Methodology (RSM) for in-depth analysis of factor interactions and optimization. A total of 24 experimental test data sets of varying input… More >

  • Open Access

    ARTICLE

    LLM-KE: An Ontology-Aware LLM Methodology for Military Domain Knowledge Extraction

    Yu Tao1, Ruopeng Yang1,2, Yongqi Wen1,*, Yihao Zhong1, Kaige Jiao1, Xiaolei Gu1,2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-17, 2026, DOI:10.32604/cmc.2025.068670 - 10 November 2025

    Abstract Since Google introduced the concept of Knowledge Graphs (KGs) in 2012, their construction technologies have evolved into a comprehensive methodological framework encompassing knowledge acquisition, extraction, representation, modeling, fusion, computation, and storage. Within this framework, knowledge extraction, as the core component, directly determines KG quality. In military domains, traditional manual curation models face efficiency constraints due to data fragmentation, complex knowledge architectures, and confidentiality protocols. Meanwhile, crowdsourced ontology construction approaches from general domains prove non-transferable, while human-crafted ontologies struggle with generalization deficiencies. To address these challenges, this study proposes an Ontology-Aware LLM Methodology for Military Domain More >

  • Open Access

    ARTICLE

    Optimization and Sensitivity Analysis of Non-Isothermal Carreau Fluid Flow in Roll Coating Systems with Fixed Boundary Constraints: A Comparative Investigation

    Mujahid Islam1, Fateh Ali1,*, Xinlong Feng1,*, M. Zahid2, Sana Naz Maqbool1

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3511-3561, 2025, DOI:10.32604/cmes.2025.073678 - 23 December 2025

    Abstract Roll coating is a vital industrial process used in printing, packaging, and polymer film production, where maintaining a uniform coating is critical for product quality and efficiency. This work models non-isothermal Carreau fluid flow between a rotating roll and a stationary wall under fixed boundary constraints to evaluate how non-Newtonian and thermal effects influence coating performance. The governing equations are transformed into non-dimensional form and simplified using lubrication approximation theory. Approximate analytical solutions are obtained via the perturbation technique, while numerical results are computed using both the finite difference method and the BVP-Midrich technique. Furthermore, More >

  • Open Access

    ARTICLE

    An Automated Adaptive Finite Element Methodology for 2D Linear Elastic Fatigue Crack Growth Simulation

    Abdulnaser M. Alshoaibi*, Yahya Ali Fageehi

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 189-214, 2025, DOI:10.32604/cmes.2025.071583 - 30 October 2025

    Abstract Fatigue crack growth is a critical phenomenon in engineering structures, accounting for a significant percentage of structural failures across various industries. Accurate prediction of crack initiation, propagation paths, and fatigue life is essential for ensuring structural integrity and optimizing maintenance schedules. This paper presents a comprehensive finite element approach for simulating two-dimensional fatigue crack growth under linear elastic conditions with adaptive mesh generation. The source code for the program was developed in Fortran 95 and compiled with Visual Fortran. To achieve high-fidelity simulations, the methodology integrates several key features: it employs an automatic, adaptive meshing… More >

  • Open Access

    PROCEEDINGS

    An Advanced Design Optimization and Modeling Method of Type IV Composite Hydrogen Cylinder with Experimental Validations

    Ruiqi Li1,2, Hongda Chen1,2,*, Haixiao Hu1,2,3, Yu Zhang2, Shuxin Li1,2,3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.2, pp. 1-1, 2025, DOI:10.32604/icces.2025.011327

    Abstract Composite hydrogen cylinders are recognized as the most efficient solution for storage and transportation of high-pressure gaseous hydrogen. The plastic-lined and fully carbon fiber-wound Type IV composite cylinders are one of the most attractive advanced hydrogen storage technologies. The design of carbon fiber reinforcements on the dome section of the cylinder is one of the critical challenges in the development of Type IV composite hydrogen cylinders. Conventional design approaches ignored the variable angle of fiber-wound layers and the influence of fiber angle and thickness variations in the dome section on design and often result in… More >

  • Open Access

    ARTICLE

    Probabilistic Rock Slope Stability Assessment of Heterogeneous Pyroclastic Slopes Considering Collapse Using Monte Carlo Methodology

    Miguel A. Millán1,*, Rubén A. Galindo2, Fausto Molina-Gómez1

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 2923-2941, 2025, DOI:10.32604/cmes.2025.069356 - 30 September 2025

    Abstract Volcanic terrains exhibit a complex structure of pyroclastic deposits interspersed with sedimentary processes, resulting in irregular lithological sequences that lack lateral continuity and distinct stratigraphic patterns. This complexity poses significant challenges for slope stability analysis, requiring the development of specialized techniques to address these issues. This research presents a numerical methodology that incorporates spatial variability, nonlinear material characterization, and probabilistic analysis using a Monte Carlo framework to address this issue. The heterogeneous structure is represented by randomly assigning different lithotypes across the slope, while maintaining predefined global proportions. This contrasts with the more common approach… More >

  • Open Access

    ARTICLE

    Equivalent Design Methodology for Ship-Stiffened Steel Plates under Ogival-Nosed Projectile Penetration

    Yezhi Qin*, Qinglin Chen*, Ying Wang, Yingqiang Cai

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1883-1906, 2025, DOI:10.32604/cmes.2025.066844 - 31 August 2025

    Abstract The penetration of ogival-nosed projectiles into ship plates represents a complex impact dynamics issue essential for analyzing structural failure mechanisms. Although stiffened plates are vital in ship construction, few studies have addressed the issue of model equivalence under penetration loading. This study employs numerical simulation to validate an experiment with an ogival-nosed projectile penetrating a Q345 steel plate. Four equivalent stiffened plate methods are proposed based on the area, flexural modulus, moment of inertia, and thickness. The results indicate that thickness equivalence (DM4) is unsuitable for penetration-loaded stiffened plates, except under low-speed, non-penetrating through impacts, More >

  • Open Access

    ARTICLE

    Secure Development Methodology for Full Stack Web Applications: Proof of the Methodology Applied to Vue.js, Spring Boot and MySQL

    Kevin Santiago Rey Rodriguez, Julián David Avellaneda Galindo, Josep Tárrega Juan, Juan Ramón Bermejo Higuera*, Javier Bermejo Higuera, Juan Antonio Sicilia Montalvo

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1807-1858, 2025, DOI:10.32604/cmc.2025.067127 - 29 August 2025

    Abstract In today’s rapidly evolving digital landscape, web application security has become paramount as organizations face increasingly sophisticated cyber threats. This work presents a comprehensive methodology for implementing robust security measures in modern web applications and the proof of the Methodology applied to Vue.js, Spring Boot, and MySQL architecture. The proposed approach addresses critical security challenges through a multi-layered framework that encompasses essential security dimensions including multi-factor authentication, fine-grained authorization controls, sophisticated session management, data confidentiality and integrity protection, secure logging mechanisms, comprehensive error handling, high availability strategies, advanced input validation, and security headers implementation. Significant… More >

  • Open Access

    ARTICLE

    Methodology for Detecting Non-Technical Energy Losses Using an Ensemble of Machine Learning Algorithms

    Irbek Morgoev1, Roman Klyuev2,*, Angelika Morgoeva1

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1381-1399, 2025, DOI:10.32604/cmes.2025.064502 - 30 May 2025

    Abstract Non-technical losses (NTL) of electric power are a serious problem for electric distribution companies. The solution determines the cost, stability, reliability, and quality of the supplied electricity. The widespread use of advanced metering infrastructure (AMI) and Smart Grid allows all participants in the distribution grid to store and track electricity consumption. During the research, a machine learning model is developed that allows analyzing and predicting the probability of NTL for each consumer of the distribution grid based on daily electricity consumption readings. This model is an ensemble meta-algorithm (stacking) that generalizes the algorithms of random… More >

  • Open Access

    ARTICLE

    Field Testing Methodology for Wave Energy Converters Using the MIKE 21 Model

    Ning Jia1, Xiangnan Wang1,*, Linsheng Han2, Hainan Xia1

    Energy Engineering, Vol.122, No.6, pp. 2389-2400, 2025, DOI:10.32604/ee.2025.064891 - 29 May 2025

    Abstract With the depletion of fossil fuels and increasing environmental concerns, the development of renewable energy, such as wave energy, has become a critical component of global energy strategies. However, challenges persist in the field testing methodologies for wave energy converters (WECs). In this paper, a numerical wave field of the Dawanshan Island Sea Area in Zhuhai City is constructed based on the MIKE21 SW wave model and by using an NCEP wind field driving model. In conjunction with the IEC-62600-100 standard, by taking site testing of the “Wanshan” wave energy converter on which a sea… More >

Displaying 1-10 on page 1 of 81. Per Page