Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,520)
  • Open Access


    MDCN: Modified Dense Convolution Network Based Disease Classification in Mango Leaves

    Chirag Chandrashekar1, K. P. Vijayakumar1,*, K. Pradeep1, A. Balasundaram1,2

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2511-2533, 2024, DOI:10.32604/cmc.2024.047697

    Abstract The most widely farmed fruit in the world is mango. Both the production and quality of the mangoes are hampered by many diseases. These diseases need to be effectively controlled and mitigated. Therefore, a quick and accurate diagnosis of the disorders is essential. Deep convolutional neural networks, renowned for their independence in feature extraction, have established their value in numerous detection and classification tasks. However, it requires large training datasets and several parameters that need careful adjustment. The proposed Modified Dense Convolutional Network (MDCN) provides a successful classification scheme for plant diseases affecting mango leaves. This model employs the strength… More >

  • Open Access


    IoT Smart Devices Risk Assessment Model Using Fuzzy Logic and PSO

    Ashraf S. Mashaleh1,2,*, Noor Farizah Binti Ibrahim1, Mohammad Alauthman3, Mohammad Almseidin4, Amjad Gawanmeh5

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2245-2267, 2024, DOI:10.32604/cmc.2023.047323

    Abstract Increasing Internet of Things (IoT) device connectivity makes botnet attacks more dangerous, carrying catastrophic hazards. As IoT botnets evolve, their dynamic and multifaceted nature hampers conventional detection methods. This paper proposes a risk assessment framework based on fuzzy logic and Particle Swarm Optimization (PSO) to address the risks associated with IoT botnets. Fuzzy logic addresses IoT threat uncertainties and ambiguities methodically. Fuzzy component settings are optimized using PSO to improve accuracy. The methodology allows for more complex thinking by transitioning from binary to continuous assessment. Instead of expert inputs, PSO data-driven tunes rules and membership functions. This study presents a… More >

  • Open Access


    MCWOA Scheduler: Modified Chimp-Whale Optimization Algorithm for Task Scheduling in Cloud Computing

    Chirag Chandrashekar1, Pradeep Krishnadoss1,*, Vijayakumar Kedalu Poornachary1, Balasundaram Ananthakrishnan1,2

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2593-2616, 2024, DOI:10.32604/cmc.2024.046304

    Abstract Cloud computing provides a diverse and adaptable resource pool over the internet, allowing users to tap into various resources as needed. It has been seen as a robust solution to relevant challenges. A significant delay can hamper the performance of IoT-enabled cloud platforms. However, efficient task scheduling can lower the cloud infrastructure’s energy consumption, thus maximizing the service provider’s revenue by decreasing user job processing times. The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm (MCWOA), combines elements of the Chimp Optimization Algorithm (COA) and the Whale Optimization Algorithm (WOA). To enhance MCWOA’s identification precision, the Sobol sequence… More >

  • Open Access


    An Improved Harris Hawk Optimization Algorithm for Flexible Job Shop Scheduling Problem

    Zhaolin Lv1, Yuexia Zhao2, Hongyue Kang3,*, Zhenyu Gao3, Yuhang Qin4

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2337-2360, 2024, DOI:10.32604/cmc.2023.045826

    Abstract Flexible job shop scheduling problem (FJSP) is the core decision-making problem of intelligent manufacturing production management. The Harris hawk optimization (HHO) algorithm, as a typical metaheuristic algorithm, has been widely employed to solve scheduling problems. However, HHO suffers from premature convergence when solving NP-hard problems. Therefore, this paper proposes an improved HHO algorithm (GNHHO) to solve the FJSP. GNHHO introduces an elitism strategy, a chaotic mechanism, a nonlinear escaping energy update strategy, and a Gaussian random walk strategy to prevent premature convergence. A flexible job shop scheduling model is constructed, and the static and dynamic FJSP is investigated to minimize… More >

  • Open Access


    Advanced Optimized Anomaly Detection System for IoT Cyberattacks Using Artificial Intelligence

    Ali Hamid Farea1,*, Omar H. Alhazmi1, Kerem Kucuk2

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1525-1545, 2024, DOI:10.32604/cmc.2023.045794

    Abstract While emerging technologies such as the Internet of Things (IoT) have many benefits, they also pose considerable security challenges that require innovative solutions, including those based on artificial intelligence (AI), given that these techniques are increasingly being used by malicious actors to compromise IoT systems. Although an ample body of research focusing on conventional AI methods exists, there is a paucity of studies related to advanced statistical and optimization approaches aimed at enhancing security measures. To contribute to this nascent research stream, a novel AI-driven security system denoted as “AI2AI” is presented in this work. AI2AI employs AI techniques to… More >

  • Open Access


    Optimal Operation Strategy of Electricity-Hydrogen Regional Energy System under Carbon-Electricity Market Trading

    Jingyu Li1,2, Mushui Wang1,2,*, Zhaoyuan Wu1,3, Guizhen Tian1,2, Na Zhang1,2, Guangchen Liu1,2

    Energy Engineering, Vol.121, No.3, pp. 619-641, 2024, DOI:10.32604/ee.2023.044862

    Abstract Given the “double carbon” objective and the drive toward low-carbon power, investigating the integration and interaction within the carbon-electricity market can enhance renewable energy utilization and facilitate energy conservation and emission reduction endeavors. However, further research is necessary to explore operational optimization methods for establishing a regional energy system using Power-to-Hydrogen (P2H) technology, focusing on participating in combined carbon-electricity market transactions. This study introduces an innovative Electro-Hydrogen Regional Energy System (EHRES) in this context. This system integrates renewable energy sources, a P2H system, cogeneration units, and energy storage devices. The core purpose of this integration is to optimize renewable energy… More > Graphic Abstract

    Optimal Operation Strategy of Electricity-Hydrogen Regional Energy System under Carbon-Electricity Market Trading

  • Open Access


    Electric Vehicle Charging Load Optimization Strategy Based on Dynamic Time-of-Use Tariff

    Shuwei Zhong, Yanbo Che*, Shangyuan Zhang

    Energy Engineering, Vol.121, No.3, pp. 603-618, 2024, DOI:10.32604/ee.2023.044667

    Abstract Electric vehicle (EV) is an ideal solution to resolve the carbon emission issue and the fossil fuels scarcity problem in the future. However, a large number of EVs will be concentrated on charging during the valley hours leading to new load peaks under the guidance of static time-of-use tariff. Therefore, this paper proposes a dynamic time-of-use tariff mechanism, which redefines the peak and valley time periods according to the predicted loads using the fuzzy C-mean (FCM) clustering algorithm, and then dynamically adjusts the peak and valley tariffs according to the actual load of each time period. Based on the proposed… More >

  • Open Access


    Economic Power Dispatching from Distributed Generations: Review of Optimization Techniques

    Paramjeet Kaur1, Krishna Teerth Chaturvedi1, Mohan Lal Kolhe2,*

    Energy Engineering, Vol.121, No.3, pp. 557-579, 2024, DOI:10.32604/ee.2024.043159

    Abstract In the increasingly decentralized energy environment, economical power dispatching from distributed generations (DGs) is crucial to minimizing operating costs, optimizing resource utilization, and guaranteeing a consistent and sustainable supply of electricity. A comprehensive review of optimization techniques for economic power dispatching from distributed generations is imperative to identify the most effective strategies for minimizing operational costs while maintaining grid stability and sustainability. The choice of optimization technique for economic power dispatching from DGs depends on a number of factors, such as the size and complexity of the power system, the availability of computational resources, and the specific requirements of the… More >

  • Open Access


    Peak Shaving Strategy of Concentrating Solar Power Generation Based on Multi-Time-Scale and Considering Demand Response

    Lei Fang*, Haiying Dong, Xiaofei Zhen, Shuaibing Li

    Energy Engineering, Vol.121, No.3, pp. 661-679, 2024, DOI:10.32604/ee.2023.029823

    Abstract According to the multi-time-scale characteristics of power generation and demand-side response (DR) resources, as well as the improvement of prediction accuracy along with the approaching operating point, a rolling peak shaving optimization model consisting of three different time scales has been proposed. The proposed peak shaving optimization model considers not only the generation resources of two different response speeds but also the two different DR resources and determines each unit combination, generation power, and demand response strategy on different time scales so as to participate in the peaking of the power system by taking full advantage of the fast response… More >

  • Open Access


    Research on Regulation Method of Energy Storage System Based on Multi-Stage Robust Optimization

    Zaihe Yang1,*, Shuling Wang1, Runhang Zhu1, Jiao Cui2, Ji Su2, Liling Chen3

    Energy Engineering, Vol.121, No.3, pp. 807-820, 2024, DOI:10.32604/ee.2023.028167

    Abstract To address the scheduling problem involving energy storage systems and uncertain energy, we propose a method based on multi-stage robust optimization. This approach aims to regulate the energy storage system by using a multi-stage robust optimal control method, which helps overcome the limitations of traditional methods in terms of time scale. The goal is to effectively utilize the energy storage power station system to address issues caused by unpredictable variations in environmental energy and fluctuating load throughout the day. To achieve this, a mathematical model is constructed to represent uncertain energy sources such as photovoltaic and wind power. The generalized… More >

Displaying 1-10 on page 1 of 1520. Per Page