Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (163)
  • Open Access

    ARTICLE

    A Q-Learning Improved Particle Swarm Optimization for Aircraft Pulsating Assembly Line Scheduling Problem Considering Skilled Operator Allocation

    Xiaoyu Wen1,2, Haohao Liu1,2, Xinyu Zhang1,2, Haoqi Wang1,2, Yuyan Zhang1,2, Guoyong Ye1,2, Hongwen Xing3, Siren Liu3, Hao Li1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-27, 2026, DOI:10.32604/cmc.2025.069492 - 10 November 2025

    Abstract Aircraft assembly is characterized by stringent precedence constraints, limited resource availability, spatial restrictions, and a high degree of manual intervention. These factors lead to considerable variability in operator workloads and significantly increase the complexity of scheduling. To address this challenge, this study investigates the Aircraft Pulsating Assembly Line Scheduling Problem (APALSP) under skilled operator allocation, with the objective of minimizing assembly completion time. A mathematical model considering skilled operator allocation is developed, and a Q-Learning improved Particle Swarm Optimization algorithm (QLPSO) is proposed. In the algorithm design, a reverse scheduling strategy is adopted to effectively… More >

  • Open Access

    ARTICLE

    Energy Management of Photovoltaic Plant for Smart Street Lighting System

    Rebhi M’hamed1,*, Himri Youcef2,3,*, Bouchiba Bousmaha1, Yaichi Mouaadh1

    Energy Engineering, Vol.122, No.12, pp. 4899-4918, 2025, DOI:10.32604/ee.2025.070806 - 27 November 2025

    Abstract Currently, most conventional street lighting systems use a constant light mode throughout the entire night, from sunset to sunrise, which results in high energy consumption and maintenance costs. Furthermore, scientific research predicts that energy consumption for street lighting will increase in the coming years due to growing demand and rising electricity prices. The dimming strategy is a current trend and a key concept in smart street lighting systems. It involves turning on the road lights only when a vehicle or pedestrian is detected; otherwise, the control system reduces the light intensity of the lamps. Power… More > Graphic Abstract

    Energy Management of Photovoltaic Plant for Smart Street Lighting System

  • Open Access

    ARTICLE

    Optimal Location, Sizing and Technology Selection of STATCOM for Power Loss Minimization and Voltage Profile Using Multiple Optimization Methods

    Hajer Hafaiedh1,2, Adel Mahjoub3, Yahia Saoudi4, Anouar Benamor2, Okba Taouali5,*, Kamel Zidi6, Wad Ghaban6

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 571-596, 2025, DOI:10.32604/cmes.2025.071642 - 30 October 2025

    Abstract Several optimization methods, such as Particle Swarm Optimization (PSO) and Genetic Algorithm (GA), are used to select the most suitable Static Synchronous Compensator (STATCOM) technology for the optimal operation of the power system, as well as to determine its optimal location and size to minimize power losses. An IEEE 14 bus system, integrating three wind turbines based on Squirrel Cage Induction Generators (SCIGs), is used to test the applicability of the proposed algorithms. The results demonstrate that these algorithms are capable of selecting the most appropriate technology while optimally sizing and locating the STATCOM to More >

  • Open Access

    PROCEEDINGS

    Dynamic Response of Fractional-Order Thermal-Magnetic-Elastic Coupled Solids with Spherical Holes Based on Moore-Gibson-Thompson Theory

    Lixu Chen, Yongbin Ma*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.012272

    Abstract This study establishes an innovative theoretical framework for thermo-magneto-elastic coupling, based on the generalized thermoelastic theory of Moore-Gibson-Thompson (MGT), and significantly extends the constitutive equation by introducing spatio-temporal nonlocal parameters to more accurately describe the thermodynamic behavior of materials under extreme conditions, such as ultrafast laser heating and micro-nano scale environments. This paper innovatively adopts tempered Caputo fractional derivatives to describe the memory effect of the system, which can more accurately describe complex thermodynamic processes and significantly enhance the physical authenticity of the model. The dynamic response of magneto-thermo-elasticity of spherical cavity structures under time-varying… More >

  • Open Access

    PROCEEDINGS

    Thermoelastic Transient Memory Response Analysis of Spatio-Temporal Non-Localized Porous Hollow Cylinder Based on Moore-Gibson-Thompson Thermoelasticity Theory

    Yixin Zhang, Yongbin Ma*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.012268

    Abstract In this paper, a novel porous thermoelastic model is developed, building upon the existing framework of thermoelastic model. The objective of this study is to investigate the thermoelastic response behavior of porous materials. The Klein-Gordon (KG) operator is employed to describe the effect of spatio-temporal non-localization in the constitutive equation, and the memory-dependent derivative (MDD) is incorporated into the Moore-Gibson-Thompson (MGT) heat conduction equation. The model is applied to study the thermoelastic response of hollow porous cylinders under thermal shock, which accurately captures the complex micro-interaction characteristics and memory-dependent properties of the porous structure. Subsequently,… More >

  • Open Access

    ARTICLE

    An Improved Animated Oat Optimization Algorithm with Particle Swarm Optimization for Dry Eye Disease Classification

    Essam H. Houssein1,*, Eman Saber1, Nagwan Abdel Samee2

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2445-2480, 2025, DOI:10.32604/cmes.2025.069184 - 31 August 2025

    Abstract The diagnosis of Dry Eye Disease (DED), however, usually depends on clinical information and complex, high-dimensional datasets. To improve the performance of classification models, this paper proposes a Computer Aided Design (CAD) system that presents a new method for DED classification called (IAOO-PSO), which is a powerful Feature Selection technique (FS) that integrates with Opposition-Based Learning (OBL) and Particle Swarm Optimization (PSO). We improve the speed of convergence with the PSO algorithm and the exploration with the IAOO algorithm. The IAOO is demonstrated to possess superior global optimization capabilities, as validated on the IEEE Congress on More >

  • Open Access

    ARTICLE

    Fault Diagnosis Method for Photovoltaic Grid-Connected Inverters Based on MPA-VMD-PSO BiLSTM

    Jingxian Ni, Chaomeng Wang, Shiqi Sun, Yuxuan Sun, Gang Ma*

    Energy Engineering, Vol.122, No.9, pp. 3719-3736, 2025, DOI:10.32604/ee.2025.066971 - 26 August 2025

    Abstract To improve the fault diagnosis accuracy of a PV grid-connected inverter, a PV grid-connected inverter data diagnosis method based on MPA-VMD-PSO-BiLSTM is proposed. Firstly, unlike the traditional VMD algorithm which relies on manual experience to set parameters (e.g., noise tolerance, penalty parameter, number of decompositions), this paper achieves adaptive optimization of parameters through MPA algorithm to avoid the problem of feature information loss caused by manual parameter tuning, and adopts the improved VMD algorithm for feature extraction of DC-side voltage data signals of PV-grid-connected inverters; and then, adopts the PSO algorithm for the Then, the… More >

  • Open Access

    ARTICLE

    A Novel Cascaded TID-FOI Controller Tuned with Walrus Optimization Algorithm for Frequency Regulation of Deregulated Power System

    Geetanjali Dei1,2, Deepak Kumar Gupta1, Binod Kumar Sahu2, Amitkumar V. Jha3, Bhargav Appasani3,*, Nicu Bizon4,5,*

    Energy Engineering, Vol.122, No.8, pp. 3399-3431, 2025, DOI:10.32604/ee.2025.067357 - 24 July 2025

    Abstract This paper presents an innovative and effective control strategy tailored for a deregulated, diversified energy system involving multiple interconnected area. Each area integrates a unique mix of power generation technologies: Area 1 combines thermal, hydro, and distributed generation; Area 2 utilizes a blend of thermal units, distributed solar technologies (DST), and hydro power; and Third control area hosts geothermal power station alongside thermal power generation unit and hydropower units. The suggested control system employs a multi-layered approach, featuring a blended methodology utilizing the Tilted Integral Derivative controller (TID) and the Fractional-Order Integral method to enhance… More >

  • Open Access

    ARTICLE

    Multi-Level Subpopulation-Based Particle Swarm Optimization Algorithm for Hybrid Flow Shop Scheduling Problem with Limited Buffers

    Yuan Zou1, Chao Lu1,*, Lvjiang Yin2, Xiaoyu Wen3

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2305-2330, 2025, DOI:10.32604/cmc.2025.065972 - 03 July 2025

    Abstract The shop scheduling problem with limited buffers has broad applications in real-world production scenarios, so this research direction is of great practical significance. However, there is currently little research on the hybrid flow shop scheduling problem with limited buffers (LBHFSP). This paper deeply investigates the LBHFSP to optimize the goal of the total completion time. To better solve the LBHFSP, a multi-level subpopulation-based particle swarm optimization algorithm (MLPSO) is proposed, which is founded on the attributes of the LBHFSP and the shortcomings of the basic PSO (particle swarm optimization) algorithm. In MLPSO, firstly, considering the… More >

  • Open Access

    ARTICLE

    Efficient Task Allocation for Energy and Execution Time Trade-Off in Edge Computing Using Multi-Objective IPSO

    Jafar Aminu1,2,*, Rohaya Latip1,*, Zurina Mohd Hanafi1, Shafinah Kamarudin1, Danlami Gabi2

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2989-3011, 2025, DOI:10.32604/cmc.2025.062451 - 03 July 2025

    Abstract As mobile edge computing continues to develop, the demand for resource-intensive applications is steadily increasing, placing a significant strain on edge nodes. These nodes are normally subject to various constraints, for instance, limited processing capability, a few energy sources, and erratic availability being some of the common ones. Correspondingly, these problems require an effective task allocation algorithm to optimize the resources through continued high system performance and dependability in dynamic environments. This paper proposes an improved Particle Swarm Optimization technique, known as IPSO, for multi-objective optimization in edge computing to overcome these issues. To this… More >

Displaying 1-10 on page 1 of 163. Per Page