Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (134)
  • Open Access

    ARTICLE

    A Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller Model Combined with an Improved Particle Swarm Optimization Method for Fall Detection

    Jyun-Guo Wang*

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1149-1170, 2024, DOI:10.32604/csse.2024.052931 - 13 September 2024

    Abstract In many Eastern and Western countries, falling birth rates have led to the gradual aging of society. Older adults are often left alone at home or live in a long-term care center, which results in them being susceptible to unsafe events (such as falls) that can have disastrous consequences. However, automatically detecting falls from video data is challenging, and automatic fall detection methods usually require large volumes of training data, which can be difficult to acquire. To address this problem, video kinematic data can be used as training data, thereby avoiding the requirement of creating… More >

  • Open Access

    ARTICLE

    Short-Term Prediction of Photovoltaic Power Based on DBSCAN-SVM Data Cleaning and PSO-LSTM Model

    Yujin Liu1, Zhenkai Zhang1, Li Ma1, Yan Jia1,2,*, Weihua Yin3, Zhifeng Liu3

    Energy Engineering, Vol.121, No.10, pp. 3019-3035, 2024, DOI:10.32604/ee.2024.052594 - 11 September 2024

    Abstract Accurate short-term photovoltaic (PV) power prediction helps to improve the economic efficiency of power stations and is of great significance to the arrangement of grid scheduling plans. In order to improve the accuracy of PV power prediction further, this paper proposes a data cleaning method combining density clustering and support vector machine. It constructs a short-term PV power prediction model based on particle swarm optimization (PSO) optimized Long Short-Term Memory (LSTM) network. Firstly, the input features are determined using Pearson’s correlation coefficient. The feature information is clustered using density-based spatial clustering of applications with noise More >

  • Open Access

    ARTICLE

    Fitness Sharing Chaotic Particle Swarm Optimization (FSCPSO): A Metaheuristic Approach for Allocating Dynamic Virtual Machine (VM) in Fog Computing Architecture

    Prasanna Kumar Kannughatta Ranganna1, Siddesh Gaddadevara Matt2, Chin-Ling Chen3,4,*, Ananda Babu Jayachandra5, Yong-Yuan Deng4,*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2557-2578, 2024, DOI:10.32604/cmc.2024.051634 - 15 August 2024

    Abstract In recent decades, fog computing has played a vital role in executing parallel computational tasks, specifically, scientific workflow tasks. In cloud data centers, fog computing takes more time to run workflow applications. Therefore, it is essential to develop effective models for Virtual Machine (VM) allocation and task scheduling in fog computing environments. Effective task scheduling, VM migration, and allocation, altogether optimize the use of computational resources across different fog nodes. This process ensures that the tasks are executed with minimal energy consumption, which reduces the chances of resource bottlenecks. In this manuscript, the proposed framework… More >

  • Open Access

    ARTICLE

    Transient Stability Preventive Control of Wind Farm Connected Power System Considering the Uncertainty

    Yuping Bian*, Xiu Wan, Xiaoyu Zhou

    Energy Engineering, Vol.121, No.6, pp. 1637-1656, 2024, DOI:10.32604/ee.2024.047678 - 21 May 2024

    Abstract To address uncertainty as well as transient stability constraints simultaneously in the preventive control of wind farm systems, a novel three-stage optimization strategy is established in this paper. In the first stage, the probabilistic multi-objective particle swarm optimization based on the point estimate method is employed to cope with the stochastic factors. The transient security region of the system is accurately ensured by the interior point method in the second stage. Finally, the verification of the final optimal objectives and satisfied constraints are enforced in the last stage. Furthermore, the proposed strategy is a general More >

  • Open Access

    ARTICLE

    Short-Term Household Load Forecasting Based on Attention Mechanism and CNN-ICPSO-LSTM

    Lin Ma1, Liyong Wang1, Shuang Zeng1, Yutong Zhao1, Chang Liu1, Heng Zhang1, Qiong Wu2,*, Hongbo Ren2

    Energy Engineering, Vol.121, No.6, pp. 1473-1493, 2024, DOI:10.32604/ee.2024.047332 - 21 May 2024

    Abstract Accurate load forecasting forms a crucial foundation for implementing household demand response plans and optimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations, a single prediction model is hard to capture temporal features effectively, resulting in diminished prediction accuracy. In this study, a hybrid deep learning framework that integrates attention mechanism, convolution neural network (CNN), improved chaotic particle swarm optimization (ICPSO), and long short-term memory (LSTM), is proposed for short-term household load forecasting. Firstly, the CNN model is employed to extract features from the original data, enhancing the quality of data… More >

  • Open Access

    ARTICLE

    Research on the Control Strategy of Micro Wind-Hydrogen Coupled System Based on Wind Power Prediction and Hydrogen Storage System Charging/Discharging Regulation

    Yuanjun Dai, Haonan Li, Baohua Li*

    Energy Engineering, Vol.121, No.6, pp. 1607-1636, 2024, DOI:10.32604/ee.2024.047255 - 21 May 2024

    Abstract This paper addresses the micro wind-hydrogen coupled system, aiming to improve the power tracking capability of micro wind farms, the regulation capability of hydrogen storage systems, and to mitigate the volatility of wind power generation. A predictive control strategy for the micro wind-hydrogen coupled system is proposed based on the ultra-short-term wind power prediction, the hydrogen storage state division interval, and the daily scheduled output of wind power generation. The control strategy maximizes the power tracking capability, the regulation capability of the hydrogen storage system, and the fluctuation of the joint output of the wind-hydrogen… More >

  • Open Access

    ARTICLE

    A Planning Method for Operational Test of UAV Swarm Based on Mission Reliability

    Jingyu Wang1, Ping Jiang1,*, Jianjun Qi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1889-1918, 2024, DOI:10.32604/cmes.2024.049813 - 20 May 2024

    Abstract The unmanned aerial vehicle (UAV) swarm plays an increasingly important role in the modern battlefield, and the UAV swarm operational test is a vital means to validate the combat effectiveness of the UAV swarm. Due to the high cost and long duration of operational tests, it is essential to plan the test in advance. To solve the problem of planning UAV swarm operational test, this study considers the multi-stage feature of a UAV swarm mission, composed of launch, flight and combat stages, and proposes a method to find test plans that can maximize mission reliability.… More >

  • Open Access

    ARTICLE

    Alternative Method of Constructing Granular Neural Networks

    Yushan Yin1, Witold Pedrycz1,2, Zhiwu Li1,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 623-650, 2024, DOI:10.32604/cmc.2024.048787 - 25 April 2024

    Abstract Utilizing granular computing to enhance artificial neural network architecture, a new type of network emerges—the granular neural network (GNN). GNNs offer distinct advantages over their traditional counterparts: The ability to process both numerical and granular data, leading to improved interpretability. This paper proposes a novel design method for constructing GNNs, drawing inspiration from existing interval-valued neural networks built upon NNNs. However, unlike the proposed algorithm in this work, which employs interval values or triangular fuzzy numbers for connections, existing methods rely on a pre-defined numerical network. This new method utilizes a uniform distribution of information More >

  • Open Access

    ARTICLE

    Probabilistic-Ellipsoid Hybrid Reliability Multi-Material Topology Optimization Method Based on Stress Constraint

    Zibin Mao1, Qinghai Zhao1,2,*, Liang Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 757-792, 2024, DOI:10.32604/cmes.2024.048016 - 16 April 2024

    Abstract This paper proposes a multi-material topology optimization method based on the hybrid reliability of the probability-ellipsoid model with stress constraint for the stochastic uncertainty and epistemic uncertainty of mechanical loads in optimization design. The probabilistic model is combined with the ellipsoidal model to describe the uncertainty of mechanical loads. The topology optimization formula is combined with the ordered solid isotropic material with penalization (ordered-SIMP) multi-material interpolation model. The stresses of all elements are integrated into a global stress measurement that approximates the maximum stress using the normalized p-norm function. Furthermore, the sequential optimization and reliability assessment… More >

  • Open Access

    ARTICLE

    An Optimization Approach of IoD Deployment for Optimal Coverage Based on Radio Frequency Model

    Tarek Sheltami1,*, Gamil Ahmed1, Ansar Yasar2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2627-2647, 2024, DOI:10.32604/cmes.2023.044973 - 11 March 2024

    Abstract Recently, Internet of Drones (IoD) has garnered significant attention due to its widespread applications. However, deploying IoD for area coverage poses numerous limitations and challenges. These include interference between neighboring drones, the need for directional antennas, and altitude restrictions for drones. These challenges necessitate the development of efficient solutions. This research paper presents a cooperative decision-making approach for an efficient IoD deployment to address these challenges effectively. The primary objective of this study is to achieve an efficient IoD deployment strategy that maximizes the coverage region while minimizing interference between neighboring drones. In deployment problem,… More >

Displaying 1-10 on page 1 of 134. Per Page