Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access


    Efficient Parallel Computing of Multifrontal Linear Solver in Block Lanczos Algorithm for Large-Scale Structural Eigenproblems

    Wanil Byun1, Seung Jo Kim2

    CMES-Computer Modeling in Engineering & Sciences, Vol.86, No.6, pp. 551-576, 2012, DOI:10.3970/cmes.2012.086.551

    Abstract A structural eigensolver for large-scale finite element analysis is developed. The algorithms and data structures implemented in this paper are well suited for a distributed memory environment. As an eigenvalue extracting algorithm, the well-known M orthogonal block Lanczos iteration incorporated with a parallel multifrontal solver (PMFS) was chosen. Basically, for the better performance of this algorithm in parallel computation, Lanczos vector allocation, mass matrix multiplication, and M inner product procedures were efficiently implemented. And the PMFS for a linear equation which is the most time-consuming part during Lanczos iterations was improved. The idea was to More >

Displaying 1-10 on page 1 of 1. Per Page