Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (27)
  • Open Access

    ARTICLE

    A Control Algorithm for the Optimization of Batch Reactor-Based Processes

    Yanling Bai1,*, Feng Liu2

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.4, pp. 307-319, 2019, DOI:10.32604/fdmp.2019.07833

    Abstract Levenberg-Marquardt (LM) algorithm is applied for the optimization of the heat transfer of a batch reactor. The validity of the approach is verified through comparison with experimental results. It is found that the mathematical model can properly describe the heat transfer relationships characterizing the considered system, with the error being kept within ±2°C. Indeed, the difference between the actual measured values and the model calculated value curve is within ±1.5°C, which is in agreement with the model assumptions and demonstrates the reliability and effectiveness of the algorithm applied to the batch reactor heat transfer model. More >

  • Open Access

    ARTICLE

    The SLAM Algorithm for Multiple Robots Based on Parameter Estimation

    MengYuan Chen1,2

    Intelligent Automation & Soft Computing, Vol.24, No.3, pp. 593-602, 2018, DOI:10.31209/2018.100000026

    Abstract With the increasing number of feature points of a map, the dimension of systematic observation is added gradually, which leads to the deviation of the volume points from the desired trajectory and significant errors on the state estimation. An Iterative Squared-Root Cubature Kalman Filter (ISR-CKF) algorithm proposed is aimed at improving the SR-CKF algorithm on the simultaneous localization and mapping (SLAM). By introducing the method of iterative updating, the sample points are re-determined by the estimated value and the square root factor, which keeps the distortion small in the highly nonlinear environment and improves the… More >

  • Open Access

    ARTICLE

    Modeling Active Contraction and Relaxation of Left Ventricle Using Different Zero-load Diastole and Systole Geometries for Better Material Parameter Estimation and Stress/Strain Calculations

    Longling Fan1,§, Jing Yao2,§, Chun Yang3, Di Xu2, Dalin Tang1,4*

    Molecular & Cellular Biomechanics, Vol.13, No.1, pp. 33-55, 2016, DOI:10.3970/mcb.2016.013.044

    Abstract Modeling ventricle active contraction based on in vivo data is extremely challenging because of complex ventricle geometry, dynamic heart motion and active contraction where the reference geometry (zero-stress geometry) changes constantly. A new modeling approach using different diastole and systole zero-load geometries was introduced to handle the changing zero-load geometries for more accurate stress/strain calculations. Echo image data were acquired from 5 patients with infarction (Infarct Group) and 10 without (Non-Infarcted Group). Echo-based computational two-layer left ventricle models using one zero-load geometry (1G) and two zero-load geometries (2G) were constructed. Material parameter values in Mooney-Rivlin… More >

  • Open Access

    ARTICLE

    Factorial Experiment Design in the Front Velocity Modeling Approach Applied to Chromatographic Separation of Glucose and Fructose

    A. Prieto-Moreno1, L.D.Tavares Câmara2, O. Llanes-Santiago1, A. J. Silva Neto2

    CMES-Computer Modeling in Engineering & Sciences, Vol.106, No.6, pp. 441-462, 2015, DOI:10.3970/cmes.2015.106.441

    Abstract This work deals with a statistical approach to the uncertainty propagation analysis when estimating the kinetic mass transfer parameters used to model a chromatographic column in the Simulated Moving Bed. The chromatographic column modeling was performed using the new front velocity approach. The uncertainty propagation analysis of operational factors intervening in the chromatographic process to estimated parameters was made using the response surface methodology. The application of the factorial experimental design allowed us to establish those operational factors showing a greater influence on continuous chromatography. Besides, the chromatographic regions, where factors cause a greater output More >

  • Open Access

    ARTICLE

    Inverse Solution of a Chromatography Model by means of Evolutionary Computation

    M. Irízar, L. D. Câmara, A. J. Silva Neto, O. Llanes

    CMES-Computer Modeling in Engineering & Sciences, Vol.54, No.1, pp. 1-14, 2009, DOI:10.3970/cmes.2009.054.001

    Abstract Modeling of Chromatography allows a better understanding and development of new techniques to be applied at industrial level, although it's relatively complex. The models of this process are represented by systems of partial differential equations with non linear parameters difficult to estimate generally, which constitutes an inverse problem. In general there aren't analytical solutions and therefore numerical methods should be used for their direct solutions. Frequently typical boundary conditions are considered, but it's convenient to study different approaches for those. Evolutionary Computation has been used successfully in many problems of diverse areas for searching in More >

  • Open Access

    ARTICLE

    Parameter identification of beam-column structures on two-parameter elastic foundation

    F. Daghia1, W. Hasan1, L. Nobile1, E. Viola1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.39, No.1, pp. 1-28, 2009, DOI:10.3970/cmes.2009.039.001

    Abstract In this paper, a finite element model has been developed for analysing the flexural vibrations of a uniform Timoshenko beam-column on a two-parameter elastic foundation. The beam was discretized into a number of finite elements having four degrees of freedom each. The effect of end springs was incorporated in order to identify the end constraints. \newline The procedure for identifying geometric and mechanical parameters as well as the end restraints of a beam on two-parameter elastic foundation is based on experimentally measured natural frequencies from dynamic tests on the structure itself. \newline An iterative statistical More >

  • Open Access

    ARTICLE

    Application of MBPE Method to Frequency Domain Hybrid Techniques to Compute RCS of Electrically Large Objects

    C. J. Reddy1

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.5, pp. 455-462, 2004, DOI:10.3970/cmes.2004.005.455

    Abstract This paper presents an efficient algorithm to evaluate multi-spectral and multi-angular monostatic radar cross section (RCS) of large objects with very fine increments. The technique is based on the combination of Model Based Parameter Estimation (MBPE) method with hybrid frequency domain formulations. A general approach to formulation of MBPE is presented along with a similar approach called the Asymptotic Waveform Evaluation (AWE). Various numerical examples are presented for multi-spectral response calculations using method of moments (MoM) and the hybrid Finite Element-MoM technique in conjunction with MBPE. Example application of MBPE for hybrid MoM-Physical Optics approach More >

Displaying 21-30 on page 3 of 27. Per Page