Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (32)
  • Open Access

    ARTICLE

    Improved Teaching Learning Based Optimization and Its Application in Parameter Estimation of Solar Cell Models

    Qinqin Fan1,*, Yilian Zhang2, Zhihuan Wang1

    Intelligent Automation & Soft Computing, Vol.26, No.1, pp. 1-12, 2020, DOI:10.31209/2018.100000042

    Abstract Weak global exploration capability is one of the primary drawbacks in teaching learning based optimization (TLBO). To enhance the search capability of TLBO, an improved TLBO (ITLBO) is introduced in this study. In ITLBO, a uniform random number is replaced by a normal random number, and a weighted average position of the current population is chosen as the other teacher. The performance of ITLBO is compared with that of five meta-heuristic algorithms on a well-known test suite. Results demonstrate that the average performance of ITLBO is superior to that of the compared algorithms. Finally, ITLBO More >

  • Open Access

    ARTICLE

    The Identification of the Wind Parameters Based on the Interactive Multi-Models

    Lihua Zhu1, Zhiqiang Wu1, Lei Wang2, Yu Wang1, *

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 405-418, 2020, DOI:10.32604/cmc.2020.010124 - 23 July 2020

    Abstract The wind as a natural phenomenon would cause the derivation of the pesticide drops during the operation of agricultural unmanned aerial vehicles (UAV). In particular, the changeable wind makes it difficult for the precision agriculture. For accurate spraying of pesticide, it is necessary to estimate the real-time wind parameters to provide the correction reference for the UAV path. Most estimation algorithms are model based, and as such, serious errors can arise when the models fail to properly fit the physical wind motions. To address this problem, a robust estimation model is proposed in this paper. More >

  • Open Access

    ARTICLE

    Mixed Noise Parameter Estimation Based on Variance Stable Transform

    Ling Ding1, 2, Huyin Zhang1, *, Jinsheng Xiao3, Junfeng Lei3, Fang Xu3, Shejie Lu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.2, pp. 675-690, 2020, DOI:10.32604/cmes.2020.07987 - 01 February 2020

    Abstract The ultimate goal of image denoising from video is to improve the given image, which can reduce noise interference to ensure image quality. Through denoising technology, image quality can have effectively optimized, signal-to-noise ratio can have increased, and the original mage information can have better reflected. As an important preprocessing method, people have made extensive research on image denoising algorithm. Video denoising needs to take into account the various level of noise. Therefore, the estimation of noise parameters is particularly important. This paper presents a noise estimation method based on variance stability transformation, which estimates More >

  • Open Access

    ARTICLE

    Two-Dimensional Interpolation Criterion Using DFT Coefficients

    Yuan Chen1, Liangtao Duan1, Weize Sun2, *, Jingxin Xu3

    CMC-Computers, Materials & Continua, Vol.62, No.2, pp. 849-859, 2020, DOI:10.32604/cmc.2020.07115

    Abstract In this paper, we address the frequency estimator for 2-dimensional (2-D) complex sinusoids in the presence of white Gaussian noise. With the use of the sinc function model of the discrete Fourier transform (DFT) coefficients on the input data, a fast and accurate frequency estimator is devised, where only the DFT coefficient with the highest magnitude and its four neighbors are required. Variance analysis is also included to investigate the accuracy of the proposed algorithm. Simulation results are conducted to demonstrate the superiority of the developed scheme, in terms of the estimation performance and computational More >

  • Open Access

    ARTICLE

    Observability Analysis in Parameters Estimation of an Uncooperative Space Target

    Xianghao Hou1, *, Gang Qiao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.1, pp. 175-205, 2020, DOI:10.32604/cmes.2020.08452 - 01 January 2020

    Abstract To study the parameter estimating effects of a free-floating tumbling space target, the extended Kalman filter (EKF) scheme is utilized with different high-nonlinear translational and rotational coupled kinematic & dynamic models on the LIDAR measurements. Applying the aforementioned models and measurements results in the situation where one single state can be estimated differently with varying accuracies since the EKFs based on different models have different observabilities. In the proposed EKFs, the traditional quaternions based kinematics and dynamics and the dual vector quaternions (DVQ) based kinematics and dynamics are used for the modeling of the relative… More >

  • Open Access

    ARTICLE

    A Control Algorithm for the Optimization of Batch Reactor-Based Processes

    Yanling Bai1,*, Feng Liu2

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.4, pp. 307-319, 2019, DOI:10.32604/fdmp.2019.07833

    Abstract Levenberg-Marquardt (LM) algorithm is applied for the optimization of the heat transfer of a batch reactor. The validity of the approach is verified through comparison with experimental results. It is found that the mathematical model can properly describe the heat transfer relationships characterizing the considered system, with the error being kept within ±2°C. Indeed, the difference between the actual measured values and the model calculated value curve is within ±1.5°C, which is in agreement with the model assumptions and demonstrates the reliability and effectiveness of the algorithm applied to the batch reactor heat transfer model. More >

  • Open Access

    ARTICLE

    The SLAM Algorithm for Multiple Robots Based on Parameter Estimation

    MengYuan Chen1,2

    Intelligent Automation & Soft Computing, Vol.24, No.3, pp. 593-602, 2018, DOI:10.31209/2018.100000026

    Abstract With the increasing number of feature points of a map, the dimension of systematic observation is added gradually, which leads to the deviation of the volume points from the desired trajectory and significant errors on the state estimation. An Iterative Squared-Root Cubature Kalman Filter (ISR-CKF) algorithm proposed is aimed at improving the SR-CKF algorithm on the simultaneous localization and mapping (SLAM). By introducing the method of iterative updating, the sample points are re-determined by the estimated value and the square root factor, which keeps the distortion small in the highly nonlinear environment and improves the… More >

  • Open Access

    ARTICLE

    Modeling Active Contraction and Relaxation of Left Ventricle Using Different Zero-load Diastole and Systole Geometries for Better Material Parameter Estimation and Stress/Strain Calculations

    Longling Fan1,§, Jing Yao2,§, Chun Yang3, Di Xu2, Dalin Tang1,4*

    Molecular & Cellular Biomechanics, Vol.13, No.1, pp. 33-55, 2016, DOI:10.3970/mcb.2016.013.044

    Abstract Modeling ventricle active contraction based on in vivo data is extremely challenging because of complex ventricle geometry, dynamic heart motion and active contraction where the reference geometry (zero-stress geometry) changes constantly. A new modeling approach using different diastole and systole zero-load geometries was introduced to handle the changing zero-load geometries for more accurate stress/strain calculations. Echo image data were acquired from 5 patients with infarction (Infarct Group) and 10 without (Non-Infarcted Group). Echo-based computational two-layer left ventricle models using one zero-load geometry (1G) and two zero-load geometries (2G) were constructed. Material parameter values in Mooney-Rivlin… More >

  • Open Access

    ARTICLE

    Factorial Experiment Design in the Front Velocity Modeling Approach Applied to Chromatographic Separation of Glucose and Fructose

    A. Prieto-Moreno1, L.D.Tavares Câmara2, O. Llanes-Santiago1, A. J. Silva Neto2

    CMES-Computer Modeling in Engineering & Sciences, Vol.106, No.6, pp. 441-462, 2015, DOI:10.3970/cmes.2015.106.441

    Abstract This work deals with a statistical approach to the uncertainty propagation analysis when estimating the kinetic mass transfer parameters used to model a chromatographic column in the Simulated Moving Bed. The chromatographic column modeling was performed using the new front velocity approach. The uncertainty propagation analysis of operational factors intervening in the chromatographic process to estimated parameters was made using the response surface methodology. The application of the factorial experimental design allowed us to establish those operational factors showing a greater influence on continuous chromatography. Besides, the chromatographic regions, where factors cause a greater output More >

  • Open Access

    ARTICLE

    Inverse Solution of a Chromatography Model by means of Evolutionary Computation

    M. Irízar, L. D. Câmara, A. J. Silva Neto, O. Llanes

    CMES-Computer Modeling in Engineering & Sciences, Vol.54, No.1, pp. 1-14, 2009, DOI:10.3970/cmes.2009.054.001

    Abstract Modeling of Chromatography allows a better understanding and development of new techniques to be applied at industrial level, although it's relatively complex. The models of this process are represented by systems of partial differential equations with non linear parameters difficult to estimate generally, which constitutes an inverse problem. In general there aren't analytical solutions and therefore numerical methods should be used for their direct solutions. Frequently typical boundary conditions are considered, but it's convenient to study different approaches for those. Evolutionary Computation has been used successfully in many problems of diverse areas for searching in More >

Displaying 21-30 on page 3 of 32. Per Page