Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    PROCEEDINGS

    An Efficient Peridynamics Based Statistical Multiscale Method for Fracture in Composite Structure with Randomly Distributed Particles

    Zihao Yang1, Shaoqi Zheng1, Fei Han2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09250

    Abstract This paper proposes a peridynamics-based statistical multiscale (PSM) framework to simulate the macroscopic structure fracture with high efficiency. The heterogeneities of composites, including the shape, spatial distribution and volume fraction of particles, are characterized within the representative volume elements (RVEs), and their impact on structure failure are extracted as two types of peridynamic parameters, namely, statistical critical stretch and equivalent micromodulus. At the microscale level, a bondbased peridynamic (BPD) model with energy-based micromodulus correction technique is introduced to simulate the fracture in RVEs, and then the computational model of statistical critical stretch is established through micromechanical analysis. Moreover, based on… More >

  • Open Access

    ARTICLE

    Effective Elastic Properties of 3-Phase Particle Reinforced Composites with Randomly Dispersed Elastic Spherical Particles of Different Sizes

    Yu-Fu Ko1,* , Jiann-Wen Woody Ju2

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.3, pp. 1305-1328, 2021, DOI:10.32604/cmes.2021.017589

    Abstract Higher-order multiscale structures are proposed to predict the effective elastic properties of 3-phase particle reinforced composites by considering the probabilistic spherical particles spatial distribution, the particle interactions, and utilizing homogenization with ensemble volume average approach. The matrix material, spherical particles with radius a1, and spherical particles with radius a2, are denoted as the 0th phase, the 1st phase, and the 2nd phase, respectively. Particularly, the two inhomogeneity phases are different particle sizes and the same elastic material properties. Improved higher-order (in ratio of spherical particle sizes to the distance between the centers of spherical particles) bounds on effective elastic properties… More >

Displaying 1-10 on page 1 of 2. Per Page