Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (308)
  • Open Access

    ARTICLE

    Blockchain-Assisted Improved Cryptographic Privacy-Preserving FL Model with Consensus Algorithm for ORAN

    Raghavendra Kulkarni1, Venkata Satya Suresh kumar Kondeti1, Binu Sudhakaran Pillai2, Surendran Rajendran3,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-23, 2026, DOI:10.32604/cmc.2025.069835 - 10 November 2025

    Abstract The next-generation RAN, known as Open Radio Access Network (ORAN), allows for several advantages, including cost-effectiveness, network flexibility, and interoperability. Now ORAN applications, utilising machine learning (ML) and artificial intelligence (AI) techniques, have become standard practice. The need for Federated Learning (FL) for ML model training in ORAN environments is heightened by the modularised structure of the ORAN architecture and the shortcomings of conventional ML techniques. However, the traditional plaintext model update sharing of FL in multi-BS contexts is susceptible to privacy violations such as deep-leakage gradient assaults and inference. Therefore, this research presents a… More >

  • Open Access

    ARTICLE

    A Privacy-Preserving Convolutional Neural Network Inference Framework for AIoT Applications

    Haoran Wang1, Shuhong Yang2, Kuan Shao2, Tao Xiao2, Zhenyong Zhang2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.069404 - 10 November 2025

    Abstract With the rapid development of the Artificial Intelligence of Things (AIoT), convolutional neural networks (CNNs) have demonstrated potential and remarkable performance in AIoT applications due to their excellent performance in various inference tasks. However, the users have concerns about privacy leakage for the use of AI and the performance and efficiency of computing on resource-constrained IoT edge devices. Therefore, this paper proposes an efficient privacy-preserving CNN framework (i.e., EPPA) based on the Fully Homomorphic Encryption (FHE) scheme for AIoT application scenarios. In the plaintext domain, we verify schemes with different activation structures to determine the… More >

  • Open Access

    ARTICLE

    DPIL-Traj: Differential Privacy Trajectory Generation Framework with Imitation Learning

    Huaxiong Liao1,2, Xiangxuan Zhong2, Xueqi Chen2, Yirui Huang3, Yuwei Lin2, Jing Zhang2,*, Bruce Gu4

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-21, 2026, DOI:10.32604/cmc.2025.069208 - 10 November 2025

    Abstract The generation of synthetic trajectories has become essential in various fields for analyzing complex movement patterns. However, the use of real-world trajectory data poses significant privacy risks, such as location re-identification and correlation attacks. To address these challenges, privacy-preserving trajectory generation methods are critical for applications relying on sensitive location data. This paper introduces DPIL-Traj, an advanced framework designed to generate synthetic trajectories while achieving a superior balance between data utility and privacy preservation. Firstly, the framework incorporates Differential Privacy Clustering, which anonymizes trajectory data by applying differential privacy techniques that add noise, ensuring the… More >

  • Open Access

    ARTICLE

    Privacy-Preserving Gender-Based Customer Behavior Analytics in Retail Spaces Using Computer Vision

    Ginanjar Suwasono Adi1, Samsul Huda2,*, Griffani Megiyanto Rahmatullah3, Dodit Suprianto1, Dinda Qurrota Aini Al-Sefy3, Ivon Sandya Sari Putri4, Lalu Tri Wijaya Nata Kusuma5

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-23, 2026, DOI:10.32604/cmc.2025.068619 - 10 November 2025

    Abstract In the competitive retail industry of the digital era, data-driven insights into gender-specific customer behavior are essential. They support the optimization of store performance, layout design, product placement, and targeted marketing. However, existing computer vision solutions often rely on facial recognition to gather such insights, raising significant privacy and ethical concerns. To address these issues, this paper presents a privacy-preserving customer analytics system through two key strategies. First, we deploy a deep learning framework using YOLOv9s, trained on the RCA-TVGender dataset. Cameras are positioned perpendicular to observation areas to reduce facial visibility while maintaining accurate More >

  • Open Access

    ARTICLE

    Federated Multi-Label Feature Selection via Dual-Layer Hybrid Breeding Cooperative Particle Swarm Optimization with Manifold and Sparsity Regularization

    Songsong Zhang1, Huazhong Jin1,2,*, Zhiwei Ye1,2, Jia Yang1,2, Jixin Zhang1,2, Dongfang Wu1,2, Xiao Zheng1,2, Dingfeng Song1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-19, 2026, DOI:10.32604/cmc.2025.068044 - 10 November 2025

    Abstract Multi-label feature selection (MFS) is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels. However, traditional centralized methods face significant challenges in privacy-sensitive and distributed settings, often neglecting label dependencies and suffering from low computational efficiency. To address these issues, we introduce a novel framework, Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization (DHBCPSO-MSR). Leveraging the federated learning paradigm, Fed-MFSDHBCPSO allows clients to perform local feature selection (FS) using DHBCPSO-MSR. Locally selected feature subsets are encrypted with differential privacy (DP) and transmitted… More >

  • Open Access

    REVIEW

    A Comprehensive Survey on AI-Assisted Multiple Access Enablers for 6G and beyond Wireless Networks

    Kinzah Noor1, Agbotiname Lucky Imoize2,*, Michael Adedosu Adelabu3, Cheng-Chi Lee4,5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1575-1664, 2025, DOI:10.32604/cmes.2025.073200 - 26 November 2025

    Abstract The envisioned 6G wireless networks demand advanced Multiple Access (MA) schemes capable of supporting ultra-low latency, massive connectivity, high spectral efficiency, and energy efficiency (EE), especially as the current 5G networks have not achieved the promised 5G goals, including the projected 2000 times EE improvement over the legacy 4G Long Term Evolution (LTE) networks. This paper provides a comprehensive survey of Artificial Intelligence (AI)-enabled MA techniques, emphasizing their roles in Spectrum Sensing (SS), Dynamic Resource Allocation (DRA), user scheduling, interference mitigation, and protocol adaptation. In particular, we systematically analyze the progression of traditional and modern… More > Graphic Abstract

    A Comprehensive Survey on AI-Assisted Multiple Access Enablers for 6G and beyond Wireless Networks

  • Open Access

    ARTICLE

    ORTHRUS: A Model for a Decentralized and Fair Data Marketplace Supporting Two Types of Output

    Su Jin Shin1, Sang Uk Shin2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2787-2819, 2025, DOI:10.32604/cmes.2025.072602 - 26 November 2025

    Abstract To reconstruct vehicle accidents, data from the time of the incident—such as pre-collision speed and collision point—is essential. This data is collected and generated through various sensors installed in the vehicle. However, it may contain sensitive information about the vehicle owner. Consequently, vehicle owners tend to be reluctant to provide their vehicle data due to concerns about personal information exposure. Therefore, extensive research has been conducted on secure vehicle data trading models. Existing models primarily utilize centralized approaches, leading to issues such as single points of failure, data leakage, and manipulation. To address these problems,… More >

  • Open Access

    ARTICLE

    Towards Secure and Efficient Human Fall Detection: Sensor-Visual Fusion via Gramian Angular Field with Federated CNN

    Md Sabir Hossain1, Md Mahfuzur Rahman1,2,*, Mufti Mahmud1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 1087-1116, 2025, DOI:10.32604/cmes.2025.068779 - 30 October 2025

    Abstract This article presents a human fall detection system that addresses two critical challenges: privacy preservation and detection accuracy. We propose a comprehensive framework that integrates state-of-the-art machine learning models, multimodal data fusion, federated learning (FL), and Karush-Kuhn-Tucker (KKT)-based resource optimization. The system fuses data from wearable sensors and cameras using Gramian Angular Field (GAF) encoding to capture rich spatial-temporal features. To protect sensitive data, we adopt a privacy-preserving FL setup, where model training occurs locally on client devices without transferring raw data. A custom convolutional neural network (CNN) is designed to extract robust features from More > Graphic Abstract

    Towards Secure and Efficient Human Fall Detection: Sensor-Visual Fusion via Gramian Angular Field with Federated CNN

  • Open Access

    ARTICLE

    Interpretable Federated Learning Model for Cyber Intrusion Detection in Smart Cities with Privacy-Preserving Feature Selection

    Muhammad Sajid Farooq1, Muhammad Saleem2, M.A. Khan3,4, Muhammad Farrukh Khan5, Shahan Yamin Siddiqui6, Muhammad Shoukat Aslam7, Khan M. Adnan8,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5183-5206, 2025, DOI:10.32604/cmc.2025.069641 - 23 October 2025

    Abstract The rapid evolution of smart cities through IoT, cloud computing, and connected infrastructures has significantly enhanced sectors such as transportation, healthcare, energy, and public safety, but also increased exposure to sophisticated cyber threats. The diversity of devices, high data volumes, and real-time operational demands complicate security, requiring not just robust intrusion detection but also effective feature selection for relevance and scalability. Traditional Machine Learning (ML) based Intrusion Detection System (IDS) improves detection but often lacks interpretability, limiting stakeholder trust and timely responses. Moreover, centralized feature selection in conventional IDS compromises data privacy and fails to… More >

  • Open Access

    REVIEW

    Federated Learning in Convergence ICT: A Systematic Review on Recent Advancements, Challenges, and Future Directions

    Imran Ahmed1,#, Misbah Ahmad2,3,#, Gwanggil Jeon4,5,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4237-4273, 2025, DOI:10.32604/cmc.2025.068319 - 23 October 2025

    Abstract The rapid convergence of Information and Communication Technologies (ICT), driven by advancements in 5G/6G networks, cloud computing, Artificial Intelligence (AI), and the Internet of Things (IoT), is reshaping modern digital ecosystems. As massive, distributed data streams are generated across edge devices and network layers, there is a growing need for intelligent, privacy-preserving AI solutions that can operate efficiently at the network edge. Federated Learning (FL) enables decentralized model training without transferring sensitive data, addressing key challenges around privacy, bandwidth, and latency. Despite its benefits in enhancing efficiency, real-time analytics, and regulatory compliance, FL adoption faces… More >

Displaying 1-10 on page 1 of 308. Per Page