Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (315)
  • Open Access

    REVIEW

    From Identification to Obfuscation: A Survey of Cross-Network Mapping and Anti-Mapping Methods

    Shaojie Min1, Yaxiao Luo1, Kebing Liu1, Qingyuan Gong2, Yang Chen1,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.073175 - 09 December 2025

    Abstract User identity linkage (UIL) across online social networks seeks to match accounts belonging to the same real-world individual. This cross-platform mapping enables accurate user modeling but also raises serious privacy risks. Over the past decade, the research community has developed a wide range of UIL methods, from structural embeddings to multimodal fusion architectures. However, corresponding adversarial and defensive approaches remain fragmented and comparatively understudied. In this survey, we provide a unified overview of both mapping and anti-mapping methods for UIL. We categorize representative mapping models by learning paradigm and data modality, and systematically compare them… More >

  • Open Access

    ARTICLE

    A Mix Location Privacy Preservation Method Based on Differential Privacy with Clustering

    Fang Liu*, Xianghui Meng, Jiachen Li, Sibo Guo

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-21, 2026, DOI:10.32604/cmc.2025.069243 - 09 December 2025

    Abstract With the popularization of smart devices, Location-Based Services (LBS) greatly facilitates users’ life, but at the same time brings the risk of users’ location privacy leakage. Existing location privacy protection methods are deficient, failing to reasonably allocate the privacy budget for non-outlier location points and ignoring the critical location information that may be contained in the outlier points, leading to decreased data availability and privacy exposure problems. To address these problems, this paper proposes a Mix Location Privacy Preservation Method Based on Differential Privacy with Clustering (MLDP). The method first utilizes the DBSCAN clustering algorithm… More >

  • Open Access

    ARTICLE

    Blockchain-Assisted Improved Cryptographic Privacy-Preserving FL Model with Consensus Algorithm for ORAN

    Raghavendra Kulkarni1, Venkata Satya Suresh kumar Kondeti1, Binu Sudhakaran Pillai2, Surendran Rajendran3,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-23, 2026, DOI:10.32604/cmc.2025.069835 - 10 November 2025

    Abstract The next-generation RAN, known as Open Radio Access Network (ORAN), allows for several advantages, including cost-effectiveness, network flexibility, and interoperability. Now ORAN applications, utilising machine learning (ML) and artificial intelligence (AI) techniques, have become standard practice. The need for Federated Learning (FL) for ML model training in ORAN environments is heightened by the modularised structure of the ORAN architecture and the shortcomings of conventional ML techniques. However, the traditional plaintext model update sharing of FL in multi-BS contexts is susceptible to privacy violations such as deep-leakage gradient assaults and inference. Therefore, this research presents a… More >

  • Open Access

    ARTICLE

    A Privacy-Preserving Convolutional Neural Network Inference Framework for AIoT Applications

    Haoran Wang1, Shuhong Yang2, Kuan Shao2, Tao Xiao2, Zhenyong Zhang2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.069404 - 10 November 2025

    Abstract With the rapid development of the Artificial Intelligence of Things (AIoT), convolutional neural networks (CNNs) have demonstrated potential and remarkable performance in AIoT applications due to their excellent performance in various inference tasks. However, the users have concerns about privacy leakage for the use of AI and the performance and efficiency of computing on resource-constrained IoT edge devices. Therefore, this paper proposes an efficient privacy-preserving CNN framework (i.e., EPPA) based on the Fully Homomorphic Encryption (FHE) scheme for AIoT application scenarios. In the plaintext domain, we verify schemes with different activation structures to determine the… More >

  • Open Access

    ARTICLE

    DPIL-Traj: Differential Privacy Trajectory Generation Framework with Imitation Learning

    Huaxiong Liao1,2, Xiangxuan Zhong2, Xueqi Chen2, Yirui Huang3, Yuwei Lin2, Jing Zhang2,*, Bruce Gu4

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-21, 2026, DOI:10.32604/cmc.2025.069208 - 10 November 2025

    Abstract The generation of synthetic trajectories has become essential in various fields for analyzing complex movement patterns. However, the use of real-world trajectory data poses significant privacy risks, such as location re-identification and correlation attacks. To address these challenges, privacy-preserving trajectory generation methods are critical for applications relying on sensitive location data. This paper introduces DPIL-Traj, an advanced framework designed to generate synthetic trajectories while achieving a superior balance between data utility and privacy preservation. Firstly, the framework incorporates Differential Privacy Clustering, which anonymizes trajectory data by applying differential privacy techniques that add noise, ensuring the… More >

  • Open Access

    ARTICLE

    Privacy-Preserving Gender-Based Customer Behavior Analytics in Retail Spaces Using Computer Vision

    Ginanjar Suwasono Adi1, Samsul Huda2,*, Griffani Megiyanto Rahmatullah3, Dodit Suprianto1, Dinda Qurrota Aini Al-Sefy3, Ivon Sandya Sari Putri4, Lalu Tri Wijaya Nata Kusuma5

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-23, 2026, DOI:10.32604/cmc.2025.068619 - 10 November 2025

    Abstract In the competitive retail industry of the digital era, data-driven insights into gender-specific customer behavior are essential. They support the optimization of store performance, layout design, product placement, and targeted marketing. However, existing computer vision solutions often rely on facial recognition to gather such insights, raising significant privacy and ethical concerns. To address these issues, this paper presents a privacy-preserving customer analytics system through two key strategies. First, we deploy a deep learning framework using YOLOv9s, trained on the RCA-TVGender dataset. Cameras are positioned perpendicular to observation areas to reduce facial visibility while maintaining accurate More >

  • Open Access

    ARTICLE

    Federated Multi-Label Feature Selection via Dual-Layer Hybrid Breeding Cooperative Particle Swarm Optimization with Manifold and Sparsity Regularization

    Songsong Zhang1, Huazhong Jin1,2,*, Zhiwei Ye1,2, Jia Yang1,2, Jixin Zhang1,2, Dongfang Wu1,2, Xiao Zheng1,2, Dingfeng Song1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-19, 2026, DOI:10.32604/cmc.2025.068044 - 10 November 2025

    Abstract Multi-label feature selection (MFS) is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels. However, traditional centralized methods face significant challenges in privacy-sensitive and distributed settings, often neglecting label dependencies and suffering from low computational efficiency. To address these issues, we introduce a novel framework, Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization (DHBCPSO-MSR). Leveraging the federated learning paradigm, Fed-MFSDHBCPSO allows clients to perform local feature selection (FS) using DHBCPSO-MSR. Locally selected feature subsets are encrypted with differential privacy (DP) and transmitted… More >

  • Open Access

    REVIEW

    Next-Generation Lightweight Explainable AI for Cybersecurity: A Review on Transparency and Real-Time Threat Mitigation

    Khulud Salem Alshudukhi1,*, Sijjad Ali2, Mamoona Humayun3,*, Omar Alruwaili4

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3029-3085, 2025, DOI:10.32604/cmes.2025.073705 - 23 December 2025

    Abstract Problem: The integration of Artificial Intelligence (AI) into cybersecurity, while enhancing threat detection, is hampered by the “black box” nature of complex models, eroding trust, accountability, and regulatory compliance. Explainable AI (XAI) aims to resolve this opacity but introduces a critical new vulnerability: the adversarial exploitation of model explanations themselves. Gap: Current research lacks a comprehensive synthesis of this dual role of XAI in cybersecurity—as both a tool for transparency and a potential attack vector. There is a pressing need to systematically analyze the trade-offs between interpretability and security, evaluate defense mechanisms, and outline a… More >

  • Open Access

    ARTICLE

    Federated Learning for Vision-Based Applications in 6G Networks: A Simulation-Based Performance Study

    Manuel J. C. S. Reis1,*, Nishu Gupta2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4225-4243, 2025, DOI:10.32604/cmes.2025.073366 - 23 December 2025

    Abstract The forthcoming sixth generation (6G) of mobile communication networks is envisioned to be AI-native, supporting intelligent services and pervasive computing at unprecedented scale. Among the key paradigms enabling this vision, Federated Learning (FL) has gained prominence as a distributed machine learning framework that allows multiple devices to collaboratively train models without sharing raw data, thereby preserving privacy and reducing the need for centralized storage. This capability is particularly attractive for vision-based applications, where image and video data are both sensitive and bandwidth-intensive. However, the integration of FL with 6G networks presents unique challenges, including communication… More >

  • Open Access

    REVIEW

    Human Behaviour Classification in Emergency Situations Using Machine Learning with Multimodal Data: A Systematic Review (2020–2025)

    Mirza Murad Baig1, Muhammad Rehan Faheem2,*, Lal Khan3,*, Hannan Adeel2, Syed Asim Ali Shah4

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 2895-2935, 2025, DOI:10.32604/cmes.2025.073172 - 23 December 2025

    Abstract With growing urban areas, the climate continues to change as a result of growing populations, and hence, the demand for better emergency response systems has become more important than ever. Human Behaviour Classification (HBC) systems have started to play a vital role by analysing data from different sources to detect signs of emergencies. These systems are being used in many critical areas like healthcare, public safety, and disaster management to improve response time and to prepare ahead of time. But detecting human behaviour in such stressful conditions is not simple; it often comes with noisy… More > Graphic Abstract

    Human Behaviour Classification in Emergency Situations Using Machine Learning with Multimodal Data: A Systematic Review (2020–2025)

Displaying 1-10 on page 1 of 315. Per Page