Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (568)
  • Open Access

    ARTICLE

    Optimizing Solar Air Heater Performance Using Perforated V-Shaped Barriers with Varied Geometric Designs

    Sajjad Tariq A. Shafi, Mohammed K. Al-Saadi, Ameer Abed Jaddoa*

    Frontiers in Heat and Mass Transfer, Vol.23, No.2, pp. 703-719, 2025, DOI:10.32604/fhmt.2025.063118 - 25 April 2025

    Abstract To improve the heat transfer rate and thermal performance of the solar air heater due to low efficiency, new techniques, such as artificial roughness, barriers, and obstacles, should be used to increase the heat exchange between the fluid and the absorber. In this research, perforated V-shaped blockages with new geometric shapes, which are circular, hexagonal, square, rectangular, and triangular, were used. They were fixed on the absorber plate inside the channel with dimensions of 1.5 m × 0.5 m × 0.05 m, which increased the exit temperature of the air passing through the channel. The… More >

  • Open Access

    ARTICLE

    Thermodynamic Analysis of Marangoni Convection in Magnetized Nanofluid

    Joby Mackolil1,2, Mahanthesh Basavarajappa1,3, Giulio Lorenzini4,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.2, pp. 529-551, 2025, DOI:10.32604/fhmt.2025.058702 - 25 April 2025

    Abstract This article explores the optimization of heat transport in a magnetohydrodynamic nanofluid flow with mixed Marangoni convection by using the Response Surface Methodology. The convective flow is studied with external magnetism, radiative heat flux, and buoyancy. An internal heat absorption through the permeable surface is also taken into account. The governing system includes the continuity equation, Navier-Stokes momentum equation, and the conservation of energy equations, approximated by the Prandtl boundary layer theory. The entropy generation in the thermodynamic system is evaluated. Experimental data (Corcione models) is used to model the single-phase alumina-water nanofluid. The numerical… More >

  • Open Access

    REVIEW

    Research Progress of Nanotechnology on Efficient and Green Technologies for Wood Preservation: A Review

    Yuxin He1,#, Yixin Li2,#, Qiaoguang Li1, Wenqing Xiao1,*, Guijun Xie2,*

    Journal of Renewable Materials, Vol.13, No.4, pp. 699-718, 2025, DOI:10.32604/jrm.2025.058349 - 21 April 2025

    Abstract Wood, recognized as a renewable and environmentally sustainable material, plays a crucial role as an alternative energy resource within the construction industry. However, it is highly susceptible to mold and decay fungi, which can lead to surface discoloration and potentially compromise the structural integrity of wood. The advancement of nanotechnology has introduced innovative strategies for wood protection, enhancing its performance while imparting additional properties. Various approaches including nanosized metals, polymer nanocomposite and coating treatments are actively being explored in this field. Furthermore, integrating bio-based materials with nanotechnology offers a green and sustainable method for wood More >

  • Open Access

    ARTICLE

    Numerical Analysis of Entropy Generation in Joule Heated Radiative Viscous Fluid Flow over a Permeable Radially Stretching Disk

    Tahir Naseem1, Fateh Mebarek-Oudina2,3,*, Hanumesh Vaidya4, Nagina Bibi5, Katta Ramesh6,7, Sami Ullah Khan8

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 351-371, 2025, DOI:10.32604/cmes.2025.063196 - 11 April 2025

    Abstract Maximizing the efficiency of thermal engineering equipment involves minimizing entropy generation, which arises from irreversible processes. This study examines thermal transport and entropy generation in viscous flow over a radially stretching disk, incorporating the effects of magnetohydrodynamics (MHD), viscous dissipation, Joule heating, and radiation. Similarity transformations are used to obtain dimensionless nonlinear ordinary differential equations (ODEs) from the governing coupled partial differential equations (PDEs). The converted equations are then solved by using the BVP4C solver in MATLAB. To validate the findings, the results are compared with previously published studies under fixed parameter conditions, demonstrating strong… More >

  • Open Access

    ARTICLE

    Effects of Surface Herbs on the Growth of Populus L. Cutting Seedling, Soil Property and Ammonia Volatilization

    Chang Liu1,3, Chengcheng Yin1, Jinjin Zhang2, Haijun Sun1,3,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.3, pp. 695-707, 2025, DOI:10.32604/phyton.2025.061790 - 31 March 2025

    Abstract To promote the growth of cutting seeding of poplar (Populus L.), nitrogen (N) fertilizer and surface weed managements were required. We here conducted a pot experiment to examine the effects of natural vegetation, barnyardgrass (Echinochloa Beauv.), and sesbania (Sesbania cannabina pers.) on the growth of poplar cutting seedlings, soil properties, and ammonia (NH3) volatilization under three N inputs (0, 0.5, and 1.5 g/pot, i.e., N0, N0.5, and N1, respectively). Results showed that N application promoted the growth of poplar cutting seedlings, including plant height, ground diameter, and biomass, compared with N0 treatment. Moreover, under N0, sesbania significantly increased… More >

  • Open Access

    ARTICLE

    Research on the Cymbidium tortisepalum var. longibracteatum Growth and Non-Tube Rapid Propagation Based on Response Surface Methodology

    Guolan Wang, Ting Xie, Lijun Fu, Siying Qu, Jie Li*

    Phyton-International Journal of Experimental Botany, Vol.94, No.3, pp. 953-971, 2025, DOI:10.32604/phyton.2025.060634 - 31 March 2025

    Abstract The objective of this study was to determine the optimal proportions of plant growth regulators for growth and non-tube rapid propagation of Cymbidium tortisepalum var. longibracteatum; seedlings were utilized as the material. The effects of various combinations and concentrations of 6-benzylaminopurine (6-BA), gibberellic acid (GA3), and naphthaleneacetic acid (NAA) on growth and non-tube rapid propagation were assessed through a single-factor testing and response surface methodology. The results indicated that 6-BA at 60 mg/L, GA3 at 150 mg/L, and NAA at 30 mg/L were the most effective concentrations for promoting leaf buds formation in the single-factor analysis. Response surface… More >

  • Open Access

    ARTICLE

    Preparation of PVA/SA Interpenetrating Double Network Municipal Sludge Hydrogel and the Study of pH Response

    Yu Huang1,3, Tingting Dong1, Xing Zhang1, Shasha Xu2, Xiaoyu Song2, Zhaojun Wang2, Mingyan Qin1, Liwei Deng1, Yalin Li1,2,*

    Journal of Polymer Materials, Vol.42, No.1, pp. 151-172, 2025, DOI:10.32604/jpm.2025.060699 - 27 March 2025

    Abstract The rapid urbanization underscores the urgency of efficient treatment and resource utilization of municipal sludge for environmental conservation. To address this, a novel pH-responsive dual network polyvinyl alcohol/sodium alginate sludge hydrogel was devised by integrating municipal sludge with acrylic acid monomers, ammonium persulphate initiator, N, N’-methylene bisacrylamide crosslinking agent, reinforced by polyvinyl alcohol and sodium alginate through free radical cross-linking polymerization. The hydrogel’s optimal formulation was identified by adjusting the monomer, crosslinking agent, and initiator dosage while assessing its swelling behavior across various pH environments. Results revealed excellent swelling capacity, notably exhibiting a remarkable swelling More > Graphic Abstract

    Preparation of PVA/SA Interpenetrating Double Network Municipal Sludge Hydrogel and the Study of pH Response

  • Open Access

    ARTICLE

    Effect of Surface Tension on the Dynamics of an Oscillating Interface in a Vertical Slotted Channel

    Veronika Dyakova1,2,*, Olga Vlasova1, Victor Kozlov1

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.3, pp. 493-508, 2025, DOI:10.32604/fdmp.2025.060577 - 01 April 2025

    Abstract An experimental investigation of the dynamics of the interface between two low-viscosity fluids with high density contrast oscillating in a fixed vertical slotted channel has been conducted. It has been found that as the amplitude of the liquid column oscillations increases, parametric oscillations of the interface are excited in the form of a standing wave located in the channel plane. In particular, depending on the interfacial tension, the standing waves have a frequency equal to that of liquid piston oscillations (harmonic response), or half of the frequency of oscillations of the liquid column in the… More >

  • Open Access

    ARTICLE

    Steel Ball Defect Detection System Using Automatic Vertical Rotating Mechanism and Convolutional Neural Network

    Yi-Ze Wu, Yi-Cheng Huang*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 97-114, 2025, DOI:10.32604/cmc.2025.063441 - 26 March 2025

    Abstract Precision steel balls are critical components in precision bearings. Surface defects on the steel balls will significantly reduce their useful life and cause linear or rotational transmission errors. Human visual inspection of precision steel balls demands significant labor work. Besides, human inspection cannot maintain consistent quality assurance. To address these limitations and reduce inspection time, a convolutional neural network (CNN) based optical inspection system has been developed that automatically detects steel ball defects using a novel designated vertical mechanism. During image detection processing, two key challenges were addressed and resolved. They are the reflection caused… More >

  • Open Access

    REVIEW

    A Comprehensive Review of Natural Rubber Composites: Properties, Compounding Aspects, and Renewable Practices with Natural Fibre Reinforcement

    Mohamad Firdaus Omar1, Fathilah Ali1,*, Mohammed Saedi Jami1, Azlin Suhaida Azmi1, Farah Ahmad1, Mohd Zahid Marzuki2, Shantha Kumari Muniyandi3, Zuraidah Zainudin4, Minsoo P. Kim5

    Journal of Renewable Materials, Vol.13, No.3, pp. 497-538, 2025, DOI:10.32604/jrm.2024.057248 - 20 March 2025

    Abstract This review provides a comprehensive overview of natural rubber (NR) composites, focusing on their properties, compounding aspects, and renewable practices involving natural fibre reinforcement. The properties of NR are influenced by the compounding process, which incorporates ingredients such as elastomers, vulcanizing agents, accelerators, activators, and fillers like carbon black and silica. While effective in enhancing properties, these fillers lack biodegradability, prompting the exploration of sustainable alternatives. The potential of natural fibres as renewable reinforcements in NR composites is thoroughly covered in this review, highlighting both their advantages, such as improved sustainability, and the challenges they More > Graphic Abstract

    A Comprehensive Review of Natural Rubber Composites: Properties, Compounding Aspects, and Renewable Practices with Natural Fibre Reinforcement

Displaying 1-10 on page 1 of 568. Per Page