Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (635)
  • Open Access

    ARTICLE

    Data-Driven Prediction and Optimization of Mechanical Properties and Vibration Damping in Cast Iron–Granite-Epoxy Hybrid Composites

    Girish Hariharan1, Vinyas1, Gowrishankar Mandya Chennegowda1, Nitesh Kumar1, Shiva Kumar1, Deepak Doreswamy2, Subraya Krishna Bhat1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073772 - 12 January 2026

    Abstract This study presents a framework involving statistical modeling and machine learning to accurately predict and optimize the mechanical and damping properties of hybrid granite–epoxy (G–E) composites reinforced with cast iron (CI) filler particles. Hybrid G–E composite with added cast iron (CI) filler particles enhances stiffness, strength, and vibration damping, offering enhanced performance for vibration-sensitive engineering applications. Unlike conventional approaches, this work simultaneously employs Artificial Neural Networks (ANN) for high-accuracy property prediction and Response Surface Methodology (RSM) for in-depth analysis of factor interactions and optimization. A total of 24 experimental test data sets of varying input… More >

  • Open Access

    ARTICLE

    A TimeXer-Based Numerical Forecast Correction Model Optimized by an Exogenous-Variable Attention Mechanism

    Yongmei Zhang*, Tianxin Zhang, Linghua Tian

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073159 - 12 January 2026

    Abstract Marine forecasting is critical for navigation safety and disaster prevention. However, traditional ocean numerical forecasting models are often limited by substantial errors and inadequate capture of temporal-spatial features. To address the limitations, the paper proposes a TimeXer-based numerical forecast correction model optimized by an exogenous-variable attention mechanism. The model treats target forecast values as internal variables, and incorporates historical temporal-spatial data and seven-day numerical forecast results from traditional models as external variables based on the embedding strategy of TimeXer. Using a self-attention structure, the model captures correlations between exogenous variables and target sequences, explores intrinsic More >

  • Open Access

    ARTICLE

    FAIR-DQL: Fairness-Aware Deep Q-Learning for Enhanced Resource Allocation and RIS Optimization in High-Altitude Platform Networks

    Muhammad Ejaz1, Muhammad Asim2,*, Mudasir Ahmad Wani2,3, Kashish Ara Shakil4,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072464 - 12 January 2026

    Abstract The integration of High-Altitude Platform Stations (HAPS) with Reconfigurable Intelligent Surfaces (RIS) represents a critical advancement for next-generation wireless networks, offering unprecedented opportunities for ubiquitous connectivity. However, existing research reveals significant gaps in dynamic resource allocation, joint optimization, and equitable service provisioning under varying channel conditions, limiting practical deployment of these technologies. This paper addresses these challenges by proposing a novel Fairness-Aware Deep Q-Learning (FAIR-DQL) framework for joint resource management and phase configuration in HAPS-RIS systems. Our methodology employs a comprehensive three-tier algorithmic architecture integrating adaptive power control, priority-based user scheduling, and dynamic learning mechanisms. More >

  • Open Access

    ARTICLE

    Steel Surface Defect Detection via the Multiscale Edge Enhancement Method

    Yuanyuan Wang1,*, Yemeng Zhu1, Xiuchuan Chen1, Tongtong Yin1, Shiwei Su2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072404 - 12 January 2026

    Abstract To solve the false detection and missed detection problems caused by various types and sizes of defects in the detection of steel surface defects, similar defects and background features, and similarities between different defects, this paper proposes a lightweight detection model named multiscale edge and squeeze-and-excitation attention detection network (MSESE), which is built upon the You Only Look Once version 11 nano (YOLOv11n). To address the difficulty of locating defect edges, we first propose an edge enhancement module (EEM), apply it to the process of multiscale feature extraction, and then propose a multiscale edge enhancement… More >

  • Open Access

    ARTICLE

    GPR Image Enhancement and Object Detection-Based Identification for Roadbed Subsurface Defect

    Zhuangqiang Wen1, Min Zhang2, Zhekun Shou3,*

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071300 - 08 January 2026

    Abstract Roadbed disease detection is essential for maintaining road functionality. Ground penetrating radar (GPR) enables non-destructive detection without drilling. However, current identification often relies on manual inspection, which requires extensive experience, suffers from low efficiency, and is highly subjective. As the results are presented as radar images, image processing methods can be applied for fast and objective identification. Deep learning-based approaches now offer a robust solution for automated roadbed disease detection. This study proposes an enhanced Faster Region-based Convolutional Neural Networks (R-CNN) framework integrating ResNet-50 as the backbone and two-dimensional discrete Fourier spectrum transformation (2D-DFT) for… More >

  • Open Access

    ARTICLE

    Optimized Industrial Surface Defect Detection Based on Improved YOLOv11

    Hua-Qin Wu1,2, Hao Yan1,2, Hong Zhang1,2,*, Shun-Wu Xu1,2, Feng-Yu Gao1,2, Zhao-Wen Chen1,2

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.070589 - 08 January 2026

    Abstract In industrial manufacturing, efficient surface defect detection is crucial for ensuring product quality and production safety. Traditional inspection methods are often slow, subjective, and prone to errors, while classical machine vision techniques struggle with complex backgrounds and small defects. To address these challenges, this study proposes an improved YOLOv11 model for detecting defects on hot-rolled steel strips using the NEU-DET dataset. Three key improvements are introduced in the proposed model. First, a lightweight Guided Attention Feature Module (GAFM) is incorporated to enhance multi-scale feature fusion, allowing the model to better capture and integrate semantic and… More >

  • Open Access

    ARTICLE

    Energy Efficiency and Total Mission Completion Time Tradeoff in Multiple UAVs-Mounted IRS-Assisted Data Collection System

    Hong Zhao, Hongbin Chen*, Zhihui Guo, Ling Zhan, Shichao Li

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-25, 2026, DOI:10.32604/cmc.2025.072776 - 09 December 2025

    Abstract UAV-mounted intelligent reflecting surface (IRS) helps address the line-of-sight (LoS) blockage between sensor nodes (SNs) and the fusion center (FC) in Internet of Things (IoT). This paper considers an IoT assisted by multiple UAVs-mounted IRS (U-IRS), where the data from ground SNs are transmitted to the FC. In practice, energy efficiency (EE) and mission completion time are crucial metrics for evaluating system performance and operational costs. Recognizing their importance during data collection, we formulate a multi-objective optimization problem to maximize EE and minimize total mission completion time simultaneously. To characterize this tradeoff while considering optimization… More >

  • Open Access

    ARTICLE

    Lightweight Small Defect Detection with YOLOv8 Using Cascaded Multi-Receptive Fields and Enhanced Detection Heads

    Shengran Zhao, Zhensong Li*, Xiaotan Wei, Yutong Wang, Kai Zhao

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-14, 2026, DOI:10.32604/cmc.2025.068138 - 10 November 2025

    Abstract In printed circuit board (PCB) manufacturing, surface defects can significantly affect product quality. To address the performance degradation, high false detection rates, and missed detections caused by complex backgrounds in current intelligent inspection algorithms, this paper proposes CG-YOLOv8, a lightweight and improved model based on YOLOv8n for PCB surface defect detection. The proposed method optimizes the network architecture and compresses parameters to reduce model complexity while maintaining high detection accuracy, thereby enhancing the capability of identifying diverse defects under complex conditions. Specifically, a cascaded multi-receptive field (CMRF) module is adopted to replace the SPPF module… More >

  • Open Access

    ARTICLE

    Effect of Fin Spacing on Frost Growth and Airflow Dynamics in ASHP Evaporators

    Zhengqing Zhang1,2,3,*, Xiaojun Yuan2, Hui Wu2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.12, pp. 2927-2943, 2025, DOI:10.32604/fdmp.2025.071115 - 31 December 2025

    Abstract Frost accumulation on the evaporator fins of air source heat pumps (ASHPs) severely degrades heat transfer performance and overall system efficiency. To address this, the present study employs computational fluid dynamics (CFD) to investigate how fin spacing influences frosting behavior, emphasizing the coupled evolution of frost thickness, density, airflow, and temperature distribution within fin channels. Results reveal that fin spacing is a key parameter governing both the extent and rate of frost growth. Wider fin spacing enhances frost accumulation, with a final frost mass of 6.41 g at 12 mm, about 71.8% higher than at More >

  • Open Access

    ARTICLE

    Numerical Investigation of Load Generation in U-Shaped Aqueducts under Lateral Excitation: Part II—Non-Resonant Sloshing

    Yang Dou1, Hao Qin1, Yuzhi Zhang1,2, Ning Wang1, Haiqing Liu3,4, Wanli Yang1,2,4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.12, pp. 3091-3122, 2025, DOI:10.32604/fdmp.2025.070082 - 31 December 2025

    Abstract In recent years, tuned liquid dampers (TLDs) have emerged as a focal point of research due to their remarkable potential for structural vibration mitigation. Yet, progress in this field remains constrained by an incomplete understanding of the fundamental mechanisms governing sloshing-induced loads in liquid-filled containers. Aqueducts present a distinctive case, as the capacity of their contained water to function effectively as a TLD remains uncertain. To address this gap, the present study investigates the generation mechanisms of sloshing loads under non-resonant cases through a two-dimensional (2D) computational fluid dynamics (CFD) model developed in ANSYS Fluent.… More >

Displaying 1-10 on page 1 of 635. Per Page