Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,212)
  • Open Access

    ARTICLE

    Droplet Condensation and Transport Properties on Multiple Composite Surface: A Molecular Dynamics Study

    Haowei Hu1,2,*, Qi Wang1, Xinnuo Chen1, Qin Li3, Mu Du4, Dong Niu5,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.4, pp. 1245-1259, 2024, DOI:10.32604/fhmt.2024.054223

    Abstract To investigate the microscopic mechanism underlying the influence of surface-chemical gradient on heat and mass recovery, a molecular dynamics model including droplet condensation and transport process has been developed to examine heat and mass recovery performance. This work aimed at identify optimal conditions for enhancing heat and mass recovery through the combination of wettability gradient and nanopore transport. For comprehensive analysis, the structure in the simulation was categorized into three distinct groups: a homogeneous structure, a small wettability gradient, and a large wettability gradient. The homogeneous surface demonstrated low efficiency in heat and mass transfer, More >

  • Open Access

    ARTICLE

    Investigating Transport Properties of Environmentally Friendly Azeotropic Binary Blends Based on Evaporation in Auto-Cascade Refrigeration

    Zhenzhen Liu, Hua Zhang*, Zilong Wang, Yugang Zhao

    Frontiers in Heat and Mass Transfer, Vol.22, No.4, pp. 1087-1105, 2024, DOI:10.32604/fhmt.2024.053851

    Abstract The exploration of performance and prediction of environmentally friendly refrigerant physical properties represents a critical endeavor. Equilibrium molecular dynamics simulations were employed to investigate the density and transport properties of propane and ethane at ultra-low temperatures under evaporative pressure conditions. The results of the density simulation of the evaporation conditions of the blends proved the validity of the simulation method. Under identical temperature and pressure conditions, increasing the proportion of R170 in the refrigerant blends leads to a density decrease while the temperature range in which the gas-liquid phase transition occurs is lower. The analysis More >

  • Open Access

    ARTICLE

    Study of the Influence of the Distance between Smoke Outlets and Fire Source on Smoke Flow Characteristics in Tunnel Fires

    Liang Yi, Zhiqiang Lei, Zhisheng Xu, Yaolong Yin, Houlin Ying*

    Frontiers in Heat and Mass Transfer, Vol.22, No.4, pp. 977-996, 2024, DOI:10.32604/fhmt.2024.053688

    Abstract This paper explores the smoke flow characteristics in tunnel fires, giving a particular emphasis on the effects of different distances between the smoke outlets and the fire source. It examines the smoke behavior under different conditions, including variations in heat release rates, exhaust volumetric flow rates, spacing between smoke outlets, and the longitudinal fire source positions. Results indicate that altering the fire source positions and the smoke outlets in the tunnel leads to variations in the properties of smoke flow both the fire source upstream and downstream; the distance between fire source and smoke outlet… More > Graphic Abstract

    Study of the Influence of the Distance between Smoke Outlets and Fire Source on Smoke Flow Characteristics in Tunnel Fires

  • Open Access

    ARTICLE

    Enhanced Evaporation of Ternary Mixtures in Porous Medium with Microcolumn Configuration

    Bo Zhang1, Yunxie Huang2, Peilin Cui2, Zhiguo Wang1, Duo Ding1, Zhenhai Pan3, Zhenyu Liu2,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.4, pp. 997-1016, 2024, DOI:10.32604/fhmt.2024.053592

    Abstract The high surface area of porous media enhances its efficacy for evaporative cooling, however, the evaporation of pure substances often encounters issues including local overheating and unstable heat transfer. To address these challenges, a volume of fluid (VOF) model integrated with a species transport model was developed to predict the evaporation processes of ternary mixtures (water, glycerol, and 1,2-propylene glycol) in porous ceramics in this study. It reveals that the synergistic effects of thermal conduction and convective heat transfer significantly influence the mixtures evaporation, causing the fluctuations in evaporation rates. The obtained result shows a More >

  • Open Access

    ARTICLE

    Simulation and Optimization of Energy Efficiency and Total Enthalpy Analysis of Sand Based Packed Bed Solar Thermal Energy Storage

    Matiewos Mekonen Abera1,2,*, Venkata Ramayya Ancha1, Balewgize Amare1, L. Syam Sundar3, Kotturu V. V. Chandra Mouli4, Sambasivam Sangaraju5

    Frontiers in Heat and Mass Transfer, Vol.22, No.4, pp. 1043-1070, 2024, DOI:10.32604/fhmt.2024.049525

    Abstract This study is focused on the simulation and optimization of packed-bed solar thermal energy storage by using sand as a storage material and hot-water is used as a heat transfer fluid and storage as well. The analysis has been done by using the COMSOL multi-physics software and used to compute an optimization charging time of the storage. Parameters that control this optimization are storage height, storage diameter, heat transfer fluid flow rate, and sand bed particle size. The result of COMSOL multi-physics optimized thermal storage has been validated with Taguchi method. Accordingly, the optimized parameters… More >

  • Open Access

    ARTICLE

    Molecular Dynamics-Based Simulation of Polyethylene Pipe Degradation in High Temperature and High Pressure Conditions

    Guowei Feng1, Qing Li2,3, Yang Wang1,*, Nan Lin4, Sixi Zha1, Hang Dong1, Ping Chen5, Minjun Zheng6

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 2139-2161, 2024, DOI:10.32604/fdmp.2024.053941

    Abstract High-density polyethylene (HDPE) pipes have gradually become the first choice for gas networks because of their excellent characteristics. As the use of pipes increases, there will unavoidably be a significant amount of waste generated when the pipes cease their operation life, which, if improperly handled, might result in major environmental contamination issues. In this study, the thermal degradation of polyethylene materials is simulated for different pressures (10, 50, 100, and 150 MPa) and temperatures (2300, 2500, 2700, and 2900 K) in the framework of Reactive Force Field (ReaxFF) molecular dynamics simulation. The main gas products,… More >

  • Open Access

    ARTICLE

    Simulation Study on the Heat Transfer Characteristics of a Spray-Cooled Single-Pipe Cooling Tower

    Kaiyong Hu1,2,*, Zhaoyi Chen1, Yunqing Hu1, Huan Sun1, Zhili Sun1, Tonghua Zou1,3, Jinghong Ning1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 2109-2126, 2024, DOI:10.32604/fdmp.2024.050773

    Abstract The current study focuses on spray cooling applied to the heat exchange components of a cooling tower. An optimization of such processes is attempted by assessing different spray flow rates and droplet sizes. For simplicity, the heat exchanger of the cooling tower is modeled as a horizontal round tube and a cooling tower spray cooling model is developed accordingly using a computational fluid dynamics (CFD) software. The study examines the influence of varying spray flow rates and droplet sizes on the heat flow intensity between the liquid layer on the surface of the cylindrical tube… More > Graphic Abstract

    Simulation Study on the Heat Transfer Characteristics of a Spray-Cooled Single-Pipe Cooling Tower

  • Open Access

    ARTICLE

    Research on Leading Edge Erosion and Aerodynamic Characteristics of Wind Turbine Blade Airfoil

    Xin Guan*, Yuqi Xie, Shuaijie Wang, Mingyang Li, Shiwei Wu

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 2045-2058, 2024, DOI:10.32604/fdmp.2024.049671

    Abstract The effects of the erosion present on the leading edge of a wind turbine airfoil (DU 96-W-180) on its aerodynamic performances have been investigated numerically in the framework of a SST k–ω turbulence model based on the Reynolds Averaged Navier-Stokes equations (RANS). The results indicate that when sand-induced holes and small pits are involved as leading edge wear features, they have a minimal influence on the lift and drag coefficients of the airfoil. However, if delamination occurs in the same airfoil region, it significantly impacts the lift and resistance characteristics of the airfoil. Specifically, as More >

  • Open Access

    ARTICLE

    An Integrated Optimization Method for CO2 Pre-Injection during Hydraulic Fracturing in Heavy Oil Reservoirs

    Hong Dong1, Xiding Gao2,*, Xinqi Zhang1, Qian Wang1,3, Haipeng Xu1, Binrui Wang2, Chengguo Gao1, Kaiwen Luo2, Hengyi Jiang2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 1971-1991, 2024, DOI:10.32604/fdmp.2024.049406

    Abstract CO2 pre-injection during hydraulic fracturing is an important method for the development of medium to deep heavy oil reservoirs. It reduces the interfacial tension and viscosity of crude oil, enhances its flowability, maintains reservoir pressure, and increases reservoir drainage capacity. Taking the Badaowan Formation as an example, in this study a detailed three-dimensional geomechanical model based on static data from well logging interpretations is elaborated, which can take into account both vertical and horizontal geological variations and mechanical characteristics. A comprehensive analysis of the impact of key construction parameters on Pre-CO2 based fracturing (such as cluster More >

  • Open Access

    ARTICLE

    Proposition de modélisation de la dynamique du système urbain : vitesse/densité/espace perçu Simulation de l’Ile de France

    Cyril Enault*

    Revue Internationale de Géomatique, Vol.33, pp. 273-293, 2024, DOI:10.32604/rig.2024.053490

    Abstract La question environnementale est devenue un enjeu majeur de société dans les pays occidentaux et principalement en France. L’Ile de France est aujourd’hui au cœur de cette nouvelle politique de maitrise de l’expansion des agglomérations. Aussi l’étalement urbain et plus particulièrement sa mesure et son évaluation actuelle et future présente un véritable enjeu de société. L’exploration de l’étalement urbain est donc au cœur de la géographie et de l’Economie Géographique depuis le début des années 1980, période où s’amorcent les grands développements du périurbain. Fort de ces enjeux, cet article s’intéresse à la question de… More > Graphic Abstract

    Proposition de modélisation de la dynamique du système urbain : vitesse/densité/espace perçu Simulation de l’Ile de France

Displaying 1-10 on page 1 of 1212. Per Page