Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,433)
  • Open Access

    ARTICLE

    Numerical Simulation of Damage Behavior in Graphene-Reinforced Aluminum Matrix Composite Armatures under Multi-Physical Field Coupling

    Junwen Huo, Haicheng Liang, Weiye Dong, Xiaoming Du*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.073285 - 09 December 2025

    Abstract With the rapid advancement of electromagnetic launch technology, enhancing the structural stability and thermal resistance of armatures has become essential for improving the overall efficiency and reliability of railgun systems. Traditional aluminum alloy armatures often suffer from severe ablation, deformation, and uneven current distribution under high pulsed currents, which limit their performance and service life. To address these challenges, this study employs the Johnson–Cook constitutive model and the finite element method to develop armature models of aluminum matrix composites with varying heterogeneous graphene volume fractions. The temperature, stress, and strain of the armatures during operation… More >

  • Open Access

    ARTICLE

    Atomistic Simulation Study on Spall Failure and Damage Evolution in Single-Crystalline Ta at Elevated Temperatures

    Yuntian Wang1,2, Taohua Liang1,2, Yuan Zhou1,2, Weimei Shi1,2, Lijuan Huang1,2, Yuzhu Guo3,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-26, 2026, DOI:10.32604/cmc.2025.071624 - 09 December 2025

    Abstract This investigation utilizes non-equilibrium molecular dynamics (NEMD) simulations to explore shock-induced spallation in single-crystal tantalum across shock velocities of 0.75–4 km/s and initial temperatures from 300 to 2000 K. Two spallation modes emerge: classical spallation for shock velocity below 1.5 km/s, with solid-state reversible Body-Centered Cubic (BCC) to Face-Centered Cubic (FCC) or Hexagonal Close-Packed (HCP) phase transformations and discrete void nucleation-coalescence; micro-spallation for shock velocity above 3.0 km/s, featuring complete shock-induced melting and fragmentation, with a transitional regime (2.0–2.5 km/s) of partial melting. Spall strength decreases monotonically with temperature due to thermal softening. Elevated temperatures More >

  • Open Access

    ARTICLE

    Numerical Investigation of Carbon Capture, Utilization, and Storage–Enhanced Gas Recovery

    Nan Qin1, Shaofeng Ning2,*, Zihan Zhao1,2, Yu Luo1, Bo Chen1, Xiaoxu Liu1, Yongming He2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.12, pp. 2997-3009, 2025, DOI:10.32604/fdmp.2025.074456 - 31 December 2025

    Abstract Balancing CO2 emission reduction with enhanced gas recovery in carbonate reservoirs remains a key challenge in subsurface energy engineering. This study focuses on the Maokou Formation gas reservoir in the Wolonghe Gas Field, Sichuan Basin, and employs a mechanistic model integrated with numerical simulations that couple CO2–water–rock geochemical interactions to systematically explore the principal engineering and chemical factors governing Carbon Capture, Utilization, and Storage–Enhanced Gas Recovery (CCUS–EGR). The analysis reveals that both the injection–production ratio and gas injection rate exhibit optimal ranges. Maximum gas output under single-parameter variation occurs at an injection–production ratio of 0.7 and… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Microscopic Seepage Mechanisms in Gas Reservoir Storage Systems

    Yulong Zhao1, Yang Luo1,*, Yuming Luo2, Yulai Pang2, Ruihan Zhang1, Zihan Zhao3

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.12, pp. 3073-3090, 2025, DOI:10.32604/fdmp.2025.070685 - 31 December 2025

    Abstract The development of underground gas storage (UGS) systems is vital for maintaining stability between energy supply and demand. This study explores the dynamic response mechanisms of carbonate reservoirs subjected to intense injection–production cycling during UGS operations. By integrating three-dimensional digital core technology with a coupled poro-mechanical model, we simulate the pore-scale behavior of a representative Huangcaoxia UGS carbonate core. The results demonstrate that fluid–solid coupling effects markedly amplify permeability reduction, far exceeding the influence of porosity variations alone. More significantly, gas production leads to a pronounced decline in permeability driven by rising effective stress, arising More >

  • Open Access

    ARTICLE

    Scalable and Passive Concentrator Photovoltaics Using a Multi-Focal Pyramidal Array: A Multi-Physics Modeling Approach

    Mussad Mohammed Al-Zahrani*, Taher Maatallah

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 1883-1905, 2025, DOI:10.32604/fhmt.2025.074656 - 31 December 2025

    Abstract Conventional concentrator photovoltaics (CPV) face a persistent trade-off between high efficiency and high cost, driven by expensive multi-junction solar cells and complex active cooling systems. This study presents a computational investigation of a novel Multi-Focal Pyramidal Array (MFPA)-based CPV system designed to overcome this limitation. The MFPA architecture employs a geometrically optimized pyramidal concentrator to distribute concentrated sunlight onto strategically placed, low-cost monocrystalline silicon cells, enabling high efficiency energy capture while passively managing thermal loads. Coupled optical thermal electrical simulations in COMSOL Multiphysics demonstrate a geometric concentration ratio of 120×, with system temperatures maintained below More >

  • Open Access

    ARTICLE

    Cavitation Effects and Flow Field Analysis of a Jet Impingement-Negative Pressure Ammonia Removal Reactor

    Dong Hu1,2, Lingxing Hu3, Facheng Qiu3,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 1865-1882, 2025, DOI:10.32604/fhmt.2025.073409 - 31 December 2025

    Abstract With the acceleration of industrialization and urbanization, ammonia nitrogen pollution in water bodies has become increasingly severe, making the development of efficient and low-consumption wastewater treatment technologies highly significant. This study employs three-dimensional computational fluid dynamics (CFD) to investigate the cavitation mechanisms and flow field characteristics in a novel jet impingement-negative pressure ammonia removal reactor. The simulation, validated by experimental pressure data with a high degree of consistency, utilizes the Mixture model, the Realizable k-ε turbulence model, and the Schnerr-Sauer cavitation model. The results demonstrate that the flow velocity undergoes a substantial acceleration within the… More > Graphic Abstract

    Cavitation Effects and Flow Field Analysis of a Jet Impingement-Negative Pressure Ammonia Removal Reactor

  • Open Access

    ARTICLE

    Simulation and Performance Analysis of a Photovoltaic-Thermal Heat Pump System

    Jinyou Qiu1,2, Jiale Liu1,2, Yubing Li1,2,*, Shaogeng Zhong3, Guilong Dai1,2, Wenhua Liu4

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 2025-2049, 2025, DOI:10.32604/fhmt.2025.072260 - 31 December 2025

    Abstract The growing demand for energy-saving and renewable heating solutions has made photovoltaic/thermal (PV/T) heat pump systems a promising technology. However, their thermal and electrical performance, as well as the overall utilization of solar energy, strongly depend on capacity configuration and operating parameters. To address this issue, this study proposes a PV/T heat pump system featuring a novel rhombic flow channel structure that functions as the collector-evaporator. An experimental test bench was established to evaluate system performance, and a one-dimensional numerical model was developed to investigate the effects of environmental and operating parameters. The simulation results… More > Graphic Abstract

    Simulation and Performance Analysis of a Photovoltaic-Thermal Heat Pump System

  • Open Access

    ARTICLE

    Simulation of Temperature Field in Oil-Based Drill Cuttings Pyrolysis Furnace for Shale Gas

    Pu Liu, Guangwei Bai*, Wei Li, Chuanhua Ge

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 1847-1864, 2025, DOI:10.32604/fhmt.2025.070378 - 31 December 2025

    Abstract To address the issue of uneven temperature distribution in shale gas oil-based drill cuttings pyrolysis furnaces, a numerical model was developed using Fluent software. The effects of nitrogen flow rate, heating tube spacing, and furnace dimensions on the internal temperature field were thoroughly analyzed from a mechanistic perspective. The results indicated that non-uniform radiation from the heating tubes and flow disturbances induced by the nitrogen stream were the primary causes of localized heat concentration. Under no-load conditions, the maximum deviation between simulated and on-site measured temperatures was 1.5%, validating the model’s accuracy. Furthermore, this study More >

  • Open Access

    ARTICLE

    Thermal Performance Assessment of a Trombe Wall in Social Housing through Numerical Simulation: A Case Study in Mexico

    Y.C. Rodríguez-Gómez1, J. Serrano-Arellano1,*, F.N. Demesa-López1, J.M. Belman-Flores2, J.F. Ituna-Yudonago3

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 2073-2107, 2025, DOI:10.32604/fhmt.2025.069564 - 31 December 2025

    Abstract The Trombe Wall (TW) is a low-cost, passive heating system known for its high thermal efficiency, particularly in cold and temperate climates. Recent research has explored its adaptability to warm-dry climates with high thermal variability, such as those found in central Mexico. This study presents a dynamic simulation-based analysis of the TW’s thermal performance in a representative social housing unit located in Pachuca de Soto, Hidalgo. Two models were compared—one with a south-facing TW system and one without—to evaluate indoor thermal comfort throughout a full annual cycle. The simulations were conducted using OpenStudio and EnergyPlus,… More > Graphic Abstract

    Thermal Performance Assessment of a Trombe Wall in Social Housing through Numerical Simulation: A Case Study in Mexico

  • Open Access

    ARTICLE

    Federated Learning for Vision-Based Applications in 6G Networks: A Simulation-Based Performance Study

    Manuel J. C. S. Reis1,*, Nishu Gupta2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4225-4243, 2025, DOI:10.32604/cmes.2025.073366 - 23 December 2025

    Abstract The forthcoming sixth generation (6G) of mobile communication networks is envisioned to be AI-native, supporting intelligent services and pervasive computing at unprecedented scale. Among the key paradigms enabling this vision, Federated Learning (FL) has gained prominence as a distributed machine learning framework that allows multiple devices to collaboratively train models without sharing raw data, thereby preserving privacy and reducing the need for centralized storage. This capability is particularly attractive for vision-based applications, where image and video data are both sensitive and bandwidth-intensive. However, the integration of FL with 6G networks presents unique challenges, including communication… More >

Displaying 1-10 on page 1 of 1433. Per Page