Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    ARTICLE

    Three Dimensional Coupling between Elastic and Thermal Fields in the Static Analysis of Multilayered Composite Shells

    Salvatore Brischetto*, Roberto Torre, Domenico Cesare

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2551-2594, 2023, DOI:10.32604/cmes.2023.026312

    Abstract This new work aims to develop a full coupled thermomechanical method including both the temperature profile and displacements as primary unknowns of the model. This generic full coupled 3D exact shell model permits the thermal stress investigation of laminated isotropic, composite and sandwich structures. Cylindrical and spherical panels, cylinders and plates are analyzed in orthogonal mixed curved reference coordinates. The 3D equilibrium relations and the 3D Fourier heat conduction equation for spherical shells are coupled and they trivially can be simplified in those for plates and cylindrical panels. The exponential matrix methodology is used to find the solutions of a… More >

  • Open Access

    ARTICLE

    Static Analysis of Anisotropic Doubly-Curved Shell Subjected to Concentrated Loads Employing Higher Order Layer-Wise Theories

    Francesco Tornabene*, Matteo Viscoti, Rossana Dimitri

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 1393-1468, 2023, DOI:10.32604/cmes.2022.022237

    Abstract In the present manuscript, a Layer-Wise (LW) generalized model is proposed for the linear static analysis of doublycurved shells constrained with general boundary conditions under the influence of concentrated and surface loads. The unknown field variable is modelled employing polynomials of various orders, each of them defined within each layer of the structure. As a particular case of the LW model, an Equivalent Single Layer (ESL) formulation is derived too. Different approaches are outlined for the assessment of external forces, as well as for non-conventional constraints. The doubly-curved shell is composed by superimposed generally anisotropic laminae, each of them characterized… More >

  • Open Access

    ARTICLE

    Static Analysis of Doubly-Curved Shell Structures of Smart Materials and Arbitrary Shape Subjected to General Loads Employing Higher Order Theories and Generalized Differential Quadrature Method

    Francesco Tornabene*, Matteo Viscoti, Rossana Dimitri

    CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.3, pp. 719-798, 2022, DOI:10.32604/cmes.2022.022210

    Abstract The article proposes an Equivalent Single Layer (ESL) formulation for the linear static analysis of arbitrarily-shaped shell structures subjected to general surface loads and boundary conditions. A parametrization of the physical domain is provided by employing a set of curvilinear principal coordinates. The generalized blending methodology accounts for a distortion of the structure so that disparate geometries can be considered. Each layer of the stacking sequence has an arbitrary orientation and is modelled as a generally anisotropic continuum. In addition, re-entrant auxetic three-dimensional honeycomb cells with soft-core behaviour are considered in the model. The unknown variables are described employing a… More > Graphic Abstract

    Static Analysis of Doubly-Curved Shell Structures of Smart Materials and Arbitrary Shape Subjected to General Loads Employing Higher Order Theories and Generalized Differential Quadrature Method

  • Open Access

    ARTICLE

    Research on Known Vulnerability Detection Method Based on Firmware Analysis

    Wenjing Wang1, Tengteng Zhao1, Xiaolong Li1,*, Lei Huang1, Wei Zhang1, Hui Guo2

    Journal of Cyber Security, Vol.4, No.1, pp. 1-15, 2022, DOI:10.32604/jcs.2022.026816

    Abstract At present, the network security situation is becoming more and more serious. Malicious network attacks such as computer viruses, Trojans and hacker attacks are becoming more and more rampant. National and group network attacks such as network information war and network terrorism have a serious damage to the production and life of the whole society. At the same time, with the rapid development of Internet of Things and the arrival of 5G era, IoT devices as an important part of industrial Internet system, have become an important target of infiltration attacks by hostile forces. This paper describes the challenges facing… More >

  • Open Access

    ARTICLE

    Combinatorial Method with Static Analysis for Source Code Security in Web Applications

    Juan Ramón Bermejo Higuera1, Javier Bermejo Higuera1, Juan Antonio Sicilia Montalvo1, Tomás Sureda Riera2, Christopher I. Argyros3, Á. Alberto Magreñán4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.2, pp. 541-565, 2021, DOI:10.32604/cmes.2021.017213

    Abstract Security weaknesses in web applications deployed in cloud architectures can seriously affect its data confidentiality and integrity. The construction of the procedure utilized in the static analysis tools of source code security differs and therefore each tool finds a different number of each weakness type for which it is designed. To utilize the possible synergies different static analysis tools may process, this work uses a new method to combine several source codes aiming to investigate how to increase the performance of security weakness detection while reducing the number of false positives. Specifically, five static analysis tools will be combined with… More >

  • Open Access

    ARTICLE

    Static and Dynamic Analyses of Spliced Column

    Deepak Kumar Singh*

    Sound & Vibration, Vol.55, No.3, pp. 253-262, 2021, DOI:10.32604/sv.2021.011627

    Abstract The analysis of spliced column has been carried out to detect optimum location of providing splices in the column. In the present work, static and dynamic (free vibration) analyses of spliced column have been done by randomising the location of splicing. A symmetrical four storey steel framed building has been modelled, analysed and designed for loads (dead, live and earthquake loads) recommended by Indian Codal provisions using Staad.Pro. The critical column at each floor level is identified based on axial force (AF), bending moment (BM) and shear force (SF). The total 16 models of spliced columns have been designed and… More >

  • Open Access

    ARTICLE

    A Learning-based Static Malware Detection System with Integrated Feature

    Zhiguo Chen1,*, Xiaorui Zhang1,2, Sungryul Kim3

    Intelligent Automation & Soft Computing, Vol.27, No.3, pp. 891-908, 2021, DOI:10.32604/iasc.2021.016933

    Abstract The rapid growth of malware poses a significant threat to the security of computer systems. Analysts now need to examine thousands of malware samples daily. It has become a challenging task to determine whether a program is a benign program or malware. Making accurate decisions about the program is crucial for anti-malware products. Precise malware detection techniques have become a popular issue in computer security. Traditional malware detection uses signature-based strategies, which are the most widespread method used in commercial anti-malware software. This method works well against known malware but cannot detect new malware. To overcome the deficiency of the… More >

  • Open Access

    ARTICLE

    Detection Technique of Software-Induced Rowhammer Attacks

    Minkyung Lee1, Jin Kwak2,*

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 349-367, 2021, DOI:10.32604/cmc.2021.014700

    Abstract Side-channel attacks have recently progressed into software-induced attacks. In particular, a rowhammer attack, which exploits the characteristics of dynamic random access memory (DRAM), can quickly and continuously access the cells as the cell density of DRAM increases, thereby generating a disturbance error affecting the neighboring cells, resulting in bit flips. Although a rowhammer attack is a highly sophisticated attack in which disturbance errors are deliberately generated into data bits, it has been reported that it can be exploited on various platforms such as mobile devices, web browsers, and virtual machines. Furthermore, there have been studies on bypassing the defense measures… More >

  • Open Access

    ARTICLE

    Static, Free Vibration and Buckling Analysis of Functionally Graded Beam via B-spline Wavelet on the Interval and Timoshenko Beam Theory

    Hao Zuo1,2, Zhi-Bo Yang1,2,3, Xue-Feng Chen1,2, Yong Xie4, Xing-Wu Zhang1,2, Yue Liu5

    CMES-Computer Modeling in Engineering & Sciences, Vol.100, No.6, pp. 477-506, 2014, DOI:10.3970/cmes.2014.100.477

    Abstract The application of B-spline wavelet on the interval (BSWI) finite element method for static, free vibration and buckling analysis in functionally graded (FG) beam is presented in this paper. The functionally graded material (FGM) is a new type of heterogeneous composite material with material properties varying continuously throughout the thickness direction according to power law form in terms of volume fraction of material constituents. Different from polynomial interpolation used in traditional finite element method, the scaling functions of BSWI are employed to form the shape functions and construct wavelet-based elements. Timoshenko beam theory and Hamilton’s principle are adopted to formulate… More >

  • Open Access

    ARTICLE

    On Static Analysis of Composite Plane State Structures via GDQFEM and Cell Method

    E. Viola1, F. Tornabene1, E. Ferretti1, N. Fantuzzi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.94, No.5, pp. 421-458, 2013, DOI:10.3970/cmes.2013.094.421

    Abstract In this paper, an advanced version of the classic GDQ method, called the Generalized Differential Quadrature Finite Element Method (GDQFEM) is formulated to solve plate elastic problems with inclusions. The GDQFEM is compared with Cell Method (CM) and Finite Element Method (FEM). In particular, stress and strain results at fiber/matrix interface of dissimilar materials are provided. The GDQFEM is based on the classic Generalized Differential Quadrature (GDQ) technique that is applied upon each sub-domain, or element, into which the problem domain is divided. When the physical domain is not regular, the mapping technique is used to transform the fundamental system… More >

Displaying 1-10 on page 1 of 15. Per Page