Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    REVIEW

    Unraveling the molecular crossroads: T2DM and Parkinson’s disease interactions

    TINGTING LIU#, XIANGRUI KONG#, JIANSHE WEI*

    BIOCELL, Vol.48, No.12, pp. 1735-1749, 2024, DOI:10.32604/biocell.2024.056272 - 30 December 2024

    Abstract Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by persistent hyperglycemia. In recent times, an elevated risk of Parkinson’s disease (PD) development among individuals with T2DM has become evident. However, the molecular mechanisms that underpin the interplay between T2DM and the pathogenesis of PD remain to be elucidated. Nevertheless, recent epidemiological studies have underscored several shared molecular pathways that are crucial for normal cellular function and are also associated with the progression and etiology of both T2DM and PD. This review encapsulates some of the shared pathophysiological mechanisms, including genetic risk factors, More >

  • Open Access

    ARTICLE

    Deep Learning Based Process Analytics Model for Predicting Type 2 Diabetes Mellitus

    A. Thasil Mohamed, Sundar Santhoshkumar*

    Computer Systems Science and Engineering, Vol.40, No.1, pp. 191-205, 2022, DOI:10.32604/csse.2022.016754 - 26 August 2021

    Abstract Process analytics is one of the popular research domains that advanced in the recent years. Process analytics encompasses identification, monitoring, and improvement of the processes through knowledge extraction from historical data. The evolution of Artificial Intelligence (AI)-enabled Electronic Health Records (EHRs) revolutionized the medical practice. Type 2 Diabetes Mellitus (T2DM) is a syndrome characterized by the lack of insulin secretion. If not diagnosed and managed at early stages, it may produce severe outcomes and at times, death too. Chronic Kidney Disease (CKD) and Coronary Heart Disease (CHD) are the most common, long-term and life-threatening diseases… More >

  • Open Access

    ARTICLE

    PPARγ LBD and its ligand specificity reveal a selection of potential partial agonist: Molecular dynamics based T2D drug discovery initiative

    BIDYUT MALLICK1,#, ASHISH RANJAN SHARMA2,#, MANOJIT BHATTACHARYA3, SANG-SOO LEE1,*, CHIRANJIB CHAKRABORTY4,*

    BIOCELL, Vol.45, No.4, pp. 953-961, 2021, DOI:10.32604/biocell.2021.015530 - 22 April 2021

    Abstract PPARγ is a peroxisome proliferator-activated receptor (PPAR) family protein and is a target for type 2 diabetes (T2D). In this paper, we have performed a molecular docking analysis between ligand molecules (CID9816265, CID11608015, CID20251380, CID20251343, CID20556263, CID624491, CID42609928, and CID86287562) and PPARγ to determine the ligand specificity. It also helps to understand the ligand-binding domain (LBD) activity of PPARγ during the binding of the ligand. Further, a molecular dynamics simulation study was performed to determine the ligand biding stability in the PPARγ LBD. Its ligand specificity informed us about the potentiality of selecting a partial… More >

Displaying 1-10 on page 1 of 3. Per Page