Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,414)
  • Open Access

    ARTICLE

    Enhanced Nature Inspired-Support Vector Machine for Glaucoma Detection

    Jahanzaib Latif1, Shanshan Tu1,*, Chuangbai Xiao1, Anas Bilal2, Sadaqat Ur Rehman3, Zohaib Ahmad4

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 1151-1172, 2023, DOI:10.32604/cmc.2023.040152

    Abstract Glaucoma is a progressive eye disease that can lead to blindness if left untreated. Early detection is crucial to prevent vision loss, but current manual scanning methods are expensive, time-consuming, and require specialized expertise. This study presents a novel approach to Glaucoma detection using the Enhanced Grey Wolf Optimized Support Vector Machine (EGWO-SVM) method. The proposed method involves preprocessing steps such as removing image noise using the adaptive median filter (AMF) and feature extraction using the previously processed speeded-up robust feature (SURF), histogram of oriented gradients (HOG), and Global features. The enhanced Grey Wolf Optimization (GWO) technique is then employed… More >

  • Open Access

    ARTICLE

    Ship Detection and Recognition Based on Improved YOLOv7

    Wei Wu1, Xiulai Li2, Zhuhua Hu1, Xiaozhang Liu3,*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 489-498, 2023, DOI:10.32604/cmc.2023.039929

    Abstract In this paper, an advanced YOLOv7 model is proposed to tackle the challenges associated with ship detection and recognition tasks, such as the irregular shapes and varying sizes of ships. The improved model replaces the fixed anchor boxes utilized in conventional YOLOv7 models with a set of more suitable anchor boxes specifically designed based on the size distribution of ships in the dataset. This paper also introduces a novel multi-scale feature fusion module, which comprises Path Aggregation Network (PAN) modules, enabling the efficient capture of ship features across different scales. Furthermore, data preprocessing is enhanced through the application of data… More >

  • Open Access

    ARTICLE

    A Flexible Architecture for Cryptographic Applications: ECC and PRESENT

    Muhammad Rashid1,*, Omar S. Sonbul1, Muhammad Arif2, Furqan Aziz Qureshi3, Saud. S. Alotaibi4, Mohammad H. Sinky1

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 1009-1025, 2023, DOI:10.32604/cmc.2023.039901

    Abstract This work presents a flexible/unified hardware architecture of Elliptic-curve Cryptography (ECC) and PRESENT for cryptographic applications. The features of the proposed work are (i) computation of only the point multiplication operation of ECC over for a 163-bit key generation, (ii) execution of only the variant of an 80-bit PRESENT block cipher for data encryption & decryption and (iii) execution of point multiplication operation (ECC algorithm) along with the data encryption and decryption (PRESENT algorithm). To establish an area overhead for the flexible design, dedicated hardware architectures of ECC and PRESENT are implemented in the first step, and a sum of… More >

  • Open Access

    ARTICLE

    Deep Transfer Learning Based Detection and Classification of Citrus Plant Diseases

    Shah Faisal1, Kashif Javed1, Sara Ali1, Areej Alasiry2, Mehrez Marzougui2, Muhammad Attique Khan3,*, Jae-Hyuk Cha4,*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 895-914, 2023, DOI:10.32604/cmc.2023.039781

    Abstract Citrus fruit crops are among the world’s most important agricultural products, but pests and diseases impact their cultivation, resulting in yield and quality losses. Computer vision and machine learning have been widely used to detect and classify plant diseases over the last decade, allowing for early disease detection and improving agricultural production. This paper presented an automatic system for the early detection and classification of citrus plant diseases based on a deep learning (DL) model, which improved accuracy while decreasing computational complexity. The most recent transfer learning-based models were applied to the Citrus Plant Dataset to improve classification accuracy. Using… More >

  • Open Access

    ARTICLE

    Anomalous Situations Recognition in Surveillance Images Using Deep Learning

    Qurat-ul-Ain Arshad1, Mudassar Raza1, Wazir Zada Khan2, Ayesha Siddiqa2, Abdul Muiz2, Muhammad Attique Khan3,*, Usman Tariq4, Taerang Kim5, Jae-Hyuk Cha5,*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 1103-1125, 2023, DOI:10.32604/cmc.2023.039752

    Abstract Anomalous situations in surveillance videos or images that may result in security issues, such as disasters, accidents, crime, violence, or terrorism, can be identified through video anomaly detection. However, differentiating anomalous situations from normal can be challenging due to variations in human activity in complex environments such as train stations, busy sporting fields, airports, shopping areas, military bases, care centers, etc. Deep learning models’ learning capability is leveraged to identify abnormal situations with improved accuracy. This work proposes a deep learning architecture called Anomalous Situation Recognition Network (ASRNet) for deep feature extraction to improve the detection accuracy of various anomalous… More >

  • Open Access

    ARTICLE

    MEM-TET: Improved Triplet Network for Intrusion Detection System

    Weifei Wang1, Jinguo Li1,*, Na Zhao2, Min Liu1

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 471-487, 2023, DOI:10.32604/cmc.2023.039733

    Abstract With the advancement of network communication technology, network traffic shows explosive growth. Consequently, network attacks occur frequently. Network intrusion detection systems are still the primary means of detecting attacks. However, two challenges continue to stymie the development of a viable network intrusion detection system: imbalanced training data and new undiscovered attacks. Therefore, this study proposes a unique deep learning-based intrusion detection method. We use two independent in-memory autoencoders trained on regular network traffic and attacks to capture the dynamic relationship between traffic features in the presence of unbalanced training data. Then the original data is fed into the triplet network… More >

  • Open Access

    ARTICLE

    IoT-Based Women Safety Gadgets (WSG): Vision, Architecture, and Design Trends

    Sharad Saxena1, Shailendra Mishra2,*, Mohammed Baljon2,*, Shamiksha Mishra3, Sunil Kumar Sharma2, Prakhar Goel1, Shubham Gupta1, Vinay Kishore1

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 1027-1045, 2023, DOI:10.32604/cmc.2023.039677

    Abstract In recent years, the growth of female employees in the commercial market and industries has increased. As a result, some people think travelling to distant and isolated locations during odd hours generates new threats to women’s safety. The exponential increase in assaults and attacks on women, on the other hand, is posing a threat to women’s growth, development, and security. At the time of the attack, it appears the women were immobilized and needed immediate support. Only self-defense isn’t sufficient against abuse; a new technological solution is desired and can be used as quickly as hitting a switch or button.… More >

  • Open Access

    ARTICLE

    Early Diagnosis of Lung Tumors for Extending Patients’ Life Using Deep Neural Networks

    A. Manju1, R. kaladevi2, Shanmugasundaram Hariharan3, Shih-Yu Chen4,5,*, Vinay Kukreja6, Pradip Kumar Sharma7, Fayez Alqahtani8, Amr Tolba9, Jin Wang10

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 993-1007, 2023, DOI:10.32604/cmc.2023.039567

    Abstract The medical community has more concern on lung cancer analysis. Medical experts’ physical segmentation of lung cancers is time-consuming and needs to be automated. The research study’s objective is to diagnose lung tumors at an early stage to extend the life of humans using deep learning techniques. Computer-Aided Diagnostic (CAD) system aids in the diagnosis and shortens the time necessary to detect the tumor detected. The application of Deep Neural Networks (DNN) has also been exhibited as an excellent and effective method in classification and segmentation tasks. This research aims to separate lung cancers from images of Magnetic Resonance Imaging… More >

  • Open Access

    ARTICLE

    XA-GANomaly: An Explainable Adaptive Semi-Supervised Learning Method for Intrusion Detection Using GANomaly

    Yuna Han1, Hangbae Chang2,*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 221-237, 2023, DOI:10.32604/cmc.2023.039463

    Abstract Intrusion detection involves identifying unauthorized network activity and recognizing whether the data constitute an abnormal network transmission. Recent research has focused on using semi-supervised learning mechanisms to identify abnormal network traffic to deal with labeled and unlabeled data in the industry. However, real-time training and classifying network traffic pose challenges, as they can lead to the degradation of the overall dataset and difficulties preventing attacks. Additionally, existing semi-supervised learning research might need to analyze the experimental results comprehensively. This paper proposes XA-GANomaly, a novel technique for explainable adaptive semi-supervised learning using GANomaly, an image anomalous detection model that dynamically trains… More >

  • Open Access

    ARTICLE

    Lightweight Surface Litter Detection Algorithm Based on Improved YOLOv5s

    Zunliang Chen1,2, Chengxu Huang1,2, Lucheng Duan1,2, Baohua Tan1,2,*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 1085-1102, 2023, DOI:10.32604/cmc.2023.039451

    Abstract In response to the problem of the high cost and low efficiency of traditional water surface litter cleanup through manpower, a lightweight water surface litter detection algorithm based on improved YOLOv5s is proposed to provide core technical support for real-time water surface litter detection by water surface litter cleanup vessels. The method reduces network parameters by introducing the deep separable convolution GhostConv in the lightweight network GhostNet to substitute the ordinary convolution in the original YOLOv5s feature extraction and fusion network; introducing the C3Ghost module to substitute the C3 module in the original backbone and neck networks to further reduce… More >

Displaying 1-10 on page 1 of 2414. Per Page  

Share Link