Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Revolutionizing Tight Reservoir Production: A Novel Dual-Medium Unsteady Seepage Model for Optimizing Volumetrically Fractured Horizontal Wells

    Xinyu Zhao1,2,*, Mofeng Li2, Kai Yan2, Li Yin3

    Energy Engineering, Vol.120, No.12, pp. 2933-2949, 2023, DOI:10.32604/ee.2023.041580

    Abstract This study presents an avant-garde approach for predicting and optimizing production in tight reservoirs, employing a dual-medium unsteady seepage model specifically fashioned for volumetrically fractured horizontal wells. Traditional models often fail to fully capture the complex dynamics associated with these unconventional reservoirs. In a significant departure from these models, our approach incorporates an initiation pressure gradient and a discrete fracture seepage network, providing a more realistic representation of the seepage process. The model also integrates an enhanced fluid-solid interaction, which allows for a more comprehensive understanding of the fluid-structure interactions in the reservoir. This is achieved through the incorporation of… More >

  • Open Access

    ARTICLE

    Experimental Investigation on the Pressure Propagation Mechanism of Tight Reservoirs

    Jing Sun1,2,3,*, Dehua Liu1,2,3, Xiang Zhu1,2,3, Wenjun Huang1,2,3, Liang Cheng1,2,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.3, pp. 425-440, 2020, DOI:10.32604/fdmp.2020.08531

    Abstract Low permeability tight sandstone reservoirs have a high filtrational resistance and a very low fluid flow rate. As a result, the propagation speed of the formation pressure is low and fluid flow behaves as a non-Darcy flow, which typically displays a highly non-linear behavior. In this paper, the characteristics and mechanism of pressure propagation in this kind of reservoir are revealed through a laboratory pressure propagation experiment and through data from an actual tight reservoir development. The main performance mechanism is as follows: A new pressure cage concept is proposed based on the pressure variation characteristics of the laboratory experiments.… More >

Displaying 1-10 on page 1 of 2. Per Page