Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ABSTRACT

    Recovery of 3D Tractions Exerted by Cells on Fibrous Extracellular Matrices

    Dawei Song1,*, Nicholas Hugenberg2, Assad A Oberai1

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 45-45, 2019, DOI:10.32604/mcb.2019.07138

    Abstract Tractions exerted by cells on the extracellular matrix (ECM) are critical in many important physiological and pathological processes such as embryonic morphogenesis, cell migration, wound healing, and cancer metastasis. Traction Force Microscopy (TFM) is a robust tool to quantify cellular tractions during cell-matrix interactions. It works by measuring the motion of fiducial markers inside the ECM in response to cellular tractions and using this information to infer the traction field. Most applications of this technique have heretofore assumed that the ECM is homogeneous and isotropic [1], although the native ECM is typically composed of fibrous networks, and thus heterogeneous and… More >

  • Open Access

    ABSTRACT

    Immune Cells Migrating through the Brain Endothelia Junctions Served as Shuttles for Nanoparticles Delivery to Glioblastoma

    Gloria B. Kim1,†, Qiong Wei2,†, Virginia Aragon-Sanabria1, Sulin Zhang2, Jian Yang1, Cheng Dong1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 15-15, 2019, DOI:10.32604/mcb.2019.07137

    Abstract Most cells survive and grow by attaching and spreading on a substrate. They generate internal tension that contracts the cell body and thus exert tractions on the underlying substrate through focal adhesions. Traction force also plays a critical role in many biological processes, such as inflammation, metastasis, and angiogenesis. Thus, measuring the cell traction force provides valuable information on understanding the underlying mechanism of these biological processes. Here, a traction force microscopy (TFM) method using super thin hydrogels composed of immobilized fluorescent beads was utilized to quantify the mechanical forces generated during the transmigration of Jurkat cells (a human T… More >

  • Open Access

    ARTICLE

    Traction Force Measurements of Human Aortic Smooth Muscle Cells Reveal a Motor-Clutch Behavior

    Petit Claudie1, Guignandon Alain2, Avril Stéphane1,*

    Molecular & Cellular Biomechanics, Vol.16, No.2, pp. 87-108, 2019, DOI:10.32604/mcb.2019.06415

    Abstract The contractile behavior of smooth muscle cells (SMCs) in the aorta is an important determinant of growth, remodeling, and homeostasis. However, quantitative values of SMC basal tone have never been characterized precisely on individual SMCs. Therefore, to address this lack, we developed an in vitro technique based on Traction Force Microscopy (TFM). Aortic SMCs from a human lineage at low passages (4-7) were cultured 2 days in conditions promoting the development of their contractile apparatus and seeded on hydrogels of varying elastic modulus (1, 4, 12 and 25 kPa) with embedded fluorescent microspheres. After complete adhesion, SMCs were artificially detached… More >

Displaying 1-10 on page 1 of 3. Per Page