Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (45)
  • Open Access


    Breast Cancer Detection Using Breastnet-18 Augmentation with Fine Tuned Vgg-16

    S. J. K. Jagadeesh Kumar1, P. Parthasarathi2, Mofreh A. Hogo3, Mehedi Masud4, Jehad F. Al-Amri5, Mohamed Abouhawwash6,7,*

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 2363-2378, 2023, DOI:10.32604/iasc.2023.033800

    Abstract Women from middle age to old age are mostly screened positive for Breast cancer which leads to death. Times over the past decades, the overall survival rate in breast cancer has improved due to advancements in early-stage diagnosis and tailored therapy. Today all hospital brings high awareness and early detection technologies for breast cancer. This increases the survival rate of women. Though traditional breast cancer treatment takes so long, early cancer techniques require an automation system. This research provides a new methodology for classifying breast cancer using ultrasound pictures that use deep learning and the combination of the best characteristics.… More >

  • Open Access


    Transfer Learning-Based Semi-Supervised Generative Adversarial Network for Malaria Classification

    Ibrar Amin1, Saima Hassan1, Samir Brahim Belhaouari2,*, Muhammad Hamza Azam3

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6335-6349, 2023, DOI:10.32604/cmc.2023.033860

    Abstract Malaria is a lethal disease responsible for thousands of deaths worldwide every year. Manual methods of malaria diagnosis are time-consuming that require a great deal of human expertise and efforts. Computer-based automated diagnosis of diseases is progressively becoming popular. Although deep learning models show high performance in the medical field, it demands a large volume of data for training which is hard to acquire for medical problems. Similarly, labeling of medical images can be done with the help of medical experts only. Several recent studies have utilized deep learning models to develop efficient malaria diagnostic system, which showed promising results.… More >

  • Open Access


    A Robust Automated Framework for Classification of CT Covid-19 Images Using MSI-ResNet

    Aghila Rajagopal1, Sultan Ahmad2,*, Sudan Jha3, Ramachandran Alagarsamy4, Abdullah Alharbi5, Bader Alouffi6

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 3215-3229, 2023, DOI:10.32604/csse.2023.025705

    Abstract Nowadays, the COVID-19 virus disease is spreading rampantly. There are some testing tools and kits available for diagnosing the virus, but it is in a limited count. To diagnose the presence of disease from radiological images, automated COVID-19 diagnosis techniques are needed. The enhancement of AI (Artificial Intelligence) has been focused in previous research, which uses X-ray images for detecting COVID-19. The most common symptoms of COVID-19 are fever, dry cough and sore throat. These symptoms may lead to an increase in the rigorous type of pneumonia with a severe barrier. Since medical imaging is not suggested recently in Canada… More >

  • Open Access


    Lightweight Multi-scale Convolutional Neural Network for Rice Leaf Disease Recognition

    Chang Zhang1, Ruiwen Ni1, Ye Mu1,2,3,4, Yu Sun1,2,3,4,*, Thobela Louis Tyasi5

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 983-994, 2023, DOI:10.32604/cmc.2023.027269

    Abstract In the field of agricultural information, the identification and prediction of rice leaf disease have always been the focus of research, and deep learning (DL) technology is currently a hot research topic in the field of pattern recognition. The research and development of high-efficiency, high-quality and low-cost automatic identification methods for rice diseases that can replace humans is an important means of dealing with the current situation from a technical perspective. This paper mainly focuses on the problem of huge parameters of the Convolutional Neural Network (CNN) model and proposes a recognition model that combines a multi-scale convolution module with… More >

  • Open Access


    Block-Wise Neural Network for Brain Tumor Identification in Magnetic Resonance Images

    Abdullah A. Asiri1, Muhammad Aamir2, Ahmad Shaf2,*, Tariq Ali2, Muhammad Zeeshan3, Muhammad Irfan4, Khalaf A. Alshamrani1, Hassan A. Alshamrani1, Fawaz F. Alqahtani1, Ali H. D. Alshehri1

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5735-5753, 2022, DOI:10.32604/cmc.2022.031747

    Abstract The precise brain tumor diagnosis is critical and shows a vital role in the medical support for treating tumor patients. Manual brain tumor segmentation for cancer analysis from many Magnetic Resonance Images (MRIs) created in medical practice is a problematic and timewasting task for experts. As a result, there is a critical necessity for more accurate computer-aided methods for early tumor detection. To remove this gap, we enhanced the computational power of a computer-aided system by proposing a fine-tuned Block-Wise Visual Geometry Group19 (BW-VGG19) architecture. In this method, a pre-trained VGG19 is fine-tuned with CNN architecture in the block-wise mechanism… More >

  • Open Access


    A Lightweight Model of VGG-U-Net for Remote Sensing Image Classification

    Mu Ye1,2,3,4, Li Ji1, Luo Tianye1, Li Sihan5, Zhang Tong1, Feng Ruilong1, Hu Tianli1,2,3,4, Gong He1,2,3,4, Guo Ying1,2,3,4, Sun Yu1,2,3,4, Thobela Louis Tyasi6, Li Shijun7,8,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6195-6205, 2022, DOI:10.32604/cmc.2022.026880

    Abstract Remote sensing image analysis is a basic and practical research hotspot in remote sensing science. Remote sensing images contain abundant ground object information and it can be used in urban planning, agricultural monitoring, ecological services, geological exploration and other aspects. In this paper, we propose a lightweight model combining vgg-16 and u-net network. By combining two convolutional neural networks, we classify scenes of remote sensing images. While ensuring the accuracy of the model, try to reduce the memory of the model. According to the experimental results of this paper, we have improved the accuracy of the model to 98%. The… More >

  • Open Access


    Anomaly Detection in Textured Images with a Convolutional Neural Network for Quality Control of Micrometric Woven Meshes

    Pierre-Frédéric Villard1,*, Maureen Boudart2, Ioana Ilea3, Fabien Pierre1

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.6, pp. 1639-1648, 2022, DOI:10.32604/fdmp.2022.021726

    Abstract Industrial woven meshes are composed of metal materials and are often used in construction, industrial and residential activities or applications. The objective of this work is defect detection in industrial fabrics in the quality control stage. In order to overcome the limitations of manual methods, which are often tedious and time-consuming, we propose a strategy that can automatically detect defects in micrometric steel meshes by means of a Convolutional Neural Network. The database used for such a purpose comes from real problem data for anomaly detection in micrometric woven meshes. This detection is performed through supervised classification with a Convolutional… More >

  • Open Access


    Face Mask Recognition for Covid-19 Prevention

    Trong Hieu Luu1, Phan Nguyen Ky Phuc2,*, Zhiqiu Yu3, Duy Dung Pham1, Huu Trong Cao1

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3251-3262, 2022, DOI:10.32604/cmc.2022.029663

    Abstract In recent years, the COVID-19 pandemic has negatively impacted all aspects of social life. Due to ease in the infected method, i.e., through small liquid particles from the mouth or the nose when people cough, sneeze, speak, sing, or breathe, the virus can quickly spread and create severe problems for people’s health. According to some research as well as World Health Organization (WHO) recommendation, one of the most economical and effective methods to prevent the spread of the pandemic is to ask people to wear the face mask in the public space. A face mask will help prevent the droplet… More >

  • Open Access


    Optimized Deep Learning Methods for Crop Yield Prediction

    K. Vignesh1,*, A. Askarunisa2, A. M. Abirami3

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1051-1067, 2023, DOI:10.32604/csse.2023.024475

    Abstract Crop yield has been predicted using environmental, land, water, and crop characteristics in a prospective research design. When it comes to predicting crop production, there are a number of factors to consider, including weather conditions, soil qualities, water levels and the location of the farm. A broad variety of algorithms based on deep learning are used to extract useful crops for forecasting. The combination of data mining and deep learning creates a whole crop yield prediction system that is able to connect raw data to predicted crop yields. The suggested study uses a Discrete Deep belief network with Visual Geometry… More >

  • Open Access


    Anatomical Region Detection Scheme Using Deep Learning Model in Video Capsule Endoscope

    S. Rajagopal1,*, T. Ramakrishnan2, S. Vairaprakash3

    Intelligent Automation & Soft Computing, Vol.34, No.3, pp. 1927-1941, 2022, DOI:10.32604/iasc.2022.024998

    Abstract Video capsule endoscope (VCE) is a developing methodology, which permits analysis of the full gastrointestinal (GI) tract with minimum intrusion. Although VCE permits for profound analysis, evaluating and analyzing for long hours of images is tiresome and cost-inefficient. To achieve automatic VCE-dependent GI disease detection, identifying the anatomical region shall permit for a more concentrated examination and abnormality identification in each area of the GI tract. Hence we proposed a hybrid (Long-short term memory-Visual Geometry Group network) LSTM-VGGNET based classification for the identification of the anatomical area inside the gastrointestinal tract caught by VCE images. The video input data is… More >

Displaying 11-20 on page 2 of 45. Per Page