Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Masked Autoencoders as Single Object Tracking Learners

    Chunjuan Bo1,*, Xin Chen2, Junxing Zhang1

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1105-1122, 2024, DOI:10.32604/cmc.2024.052329

    Abstract Significant advancements have been witnessed in visual tracking applications leveraging ViT in recent years, mainly due to the formidable modeling capabilities of Vision Transformer (ViT). However, the strong performance of such trackers heavily relies on ViT models pretrained for long periods, limiting more flexible model designs for tracking tasks. To address this issue, we propose an efficient unsupervised ViT pretraining method for the tracking task based on masked autoencoders, called TrackMAE. During pretraining, we employ two shared-parameter ViTs, serving as the appearance encoder and motion encoder, respectively. The appearance encoder encodes randomly masked image data,… More >

  • Open Access

    ARTICLE

    SMSTracker: A Self-Calibration Multi-Head Self-Attention Transformer for Visual Object Tracking

    Zhongyang Wang, Hu Zhu, Feng Liu*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 605-623, 2024, DOI:10.32604/cmc.2024.050959

    Abstract Visual object tracking plays a crucial role in computer vision. In recent years, researchers have proposed various methods to achieve high-performance object tracking. Among these, methods based on Transformers have become a research hotspot due to their ability to globally model and contextualize information. However, current Transformer-based object tracking methods still face challenges such as low tracking accuracy and the presence of redundant feature information. In this paper, we introduce self-calibration multi-head self-attention Transformer (SMSTracker) as a solution to these challenges. It employs a hybrid tensor decomposition self-organizing multi-head self-attention transformer mechanism, which not only… More >

  • Open Access

    ARTICLE

    Visual Object Tracking Based on Modified LeNet-5 and RCCF

    Aparna Gullapelly, Barnali Gupta Banik*

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 1127-1139, 2023, DOI:10.32604/csse.2023.032904

    Abstract The field of object tracking has recently made significant progress. Particularly, the performance results in both deep learning and correlation filters, based trackers achieved effective tracking performance. Moreover, there are still some difficulties with object tracking for example illumination and deformation (DEF). The precision and accuracy of tracking algorithms suffer from the effects of such occurrences. For this situation, finding a solution is important. This research proposes a new tracking algorithm to handle this problem. The features are extracted by using Modified LeNet-5, and the precision and accuracy are improved by developing the Real-Time Cross-modality… More >

  • Open Access

    ARTICLE

    Visual Object Tracking via Cascaded RPN Fusion and Coordinate Attention

    Jianming Zhang1,2,*, Kai Wang1,2, Yaoqi He1,2, Lidan Kuang1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.3, pp. 909-927, 2022, DOI:10.32604/cmes.2022.020471

    Abstract Recently, Siamese-based trackers have achieved excellent performance in object tracking. However, the high speed and deformation of objects in the movement process make tracking difficult. Therefore, we have incorporated cascaded region-proposal-network (RPN) fusion and coordinate attention into Siamese trackers. The proposed network framework consists of three parts: a feature-extraction sub-network, coordinate attention block, and cascaded RPN block.We exploit the coordinate attention block, which can embed location information into channel attention, to establish long-term spatial location dependence while maintaining channel associations. Thus, the features of different layers are enhanced by the coordinate attention block. We then More >

  • Open Access

    ARTICLE

    Enhancing the Robustness of Visual Object Tracking via Style Transfer

    Abdollah Amirkhani1,*, Amir Hossein Barshooi1, Amir Ebrahimi2

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 981-997, 2022, DOI:10.32604/cmc.2022.019001

    Abstract The performance and accuracy of computer vision systems are affected by noise in different forms. Although numerous solutions and algorithms have been presented for dealing with every type of noise, a comprehensive technique that can cover all the diverse noises and mitigate their damaging effects on the performance and precision of various systems is still missing. In this paper, we have focused on the stability and robustness of one computer vision branch (i.e., visual object tracking). We have demonstrated that, without imposing a heavy computational load on a model or changing its algorithms, the drop in… More >

Displaying 1-10 on page 1 of 5. Per Page