Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (64)
  • Open Access

    ARTICLE

    Artificial Neural Networks for Optimizing Alumina Al2O3 Particle and Droplet Behavior in 12kK Ar-H2 Atmospheric Plasma Spraying

    Ridha Djebali1,*, Bernard Pateyron2, Mokhtar Ferhi1, Mohamed Ouerhani3, Karim Khemiri1, Montassar Najari1, M. Ammar Abbassi4, Chohdi Amri5, Ridha Ennetta6, Zied Driss7

    Frontiers in Heat and Mass Transfer, Vol.23, No.2, pp. 441-461, 2025, DOI:10.32604/fhmt.2025.063375 - 25 April 2025

    Abstract This paper investigates the application of Direct Current Atmospheric Plasma Spraying (DC-APS) as a versatile thermal spray technique for the application of coatings with tailored properties to various substrates. The process uses a high-speed, high-temperature plasma jet to melt and propel the feedstock powder particles, making it particularly useful for improving the performance and durability of components in renewable energy systems such as solar cells, wind turbines, and fuel cells. The integration of nanostructured alumina (Al2O3) thin films into multilayer coatings is considered a promising advancement that improves mechanical strength, thermal stability, and environmental resistance. The More >

  • Open Access

    ARTICLE

    Evaluation of Some Egyptian Barley Cultivars Resistance to Foliar Fungal Diseases in Drought-Prone Environments under Field Conditions

    Sally Negm1, Badwy Mohdly2, Motrih Al-Mutiry3, Wael Shehata4, Karima Ahmed5, Mohamed Abou-Zeid2,*, Rana Elessawy6, Ashgan Abdel-Azim5, Amr Abdel-Fattah2, Amani Omar Abuzaid7, Enas A. Almanzalawi7, Tahani M. Alqahtani7, Shouaa A. Alrobaish8, Diaa Abd El Moneim9, Ahmed M. Abbas10,11, Mohammed O. Alshaharni10, Huda Alghamdi10, Shaimaa G. Salama12, Kairy Amer5

    Phyton-International Journal of Experimental Botany, Vol.94, No.2, pp. 347-377, 2025, DOI:10.32604/phyton.2025.057448 - 06 March 2025

    Abstract Barley (Hordeum vulgare L.) is a significant global crop that thrives in various climatic and drought-stress conditions. Furthermore, increased drought intervals and more significant weather variability resulting from climate change can affect the severity of plant diseases. Therefore, two primary objectives of integrated disease management regarding climate change are identifying cultivars resistant to foliar diseases and understanding disease progression under abiotic stress. In the current study, we assessed the quantitative foliar disease resistance of 17 commercial barley cultivars under both normal and water stress conditions over two growing seasons (from 2020/21 to 2021/22). The findings demonstrated… More >

  • Open Access

    ARTICLE

    Parametric Analysis and Designing Maps for Powder Spreading in Metal Additive Manufacturing

    Yuxuan Wu, Sirish Namilae*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 2067-2090, 2025, DOI:10.32604/cmes.2024.059091 - 27 January 2025

    Abstract Powder bed fusion (PBF) in metallic additive manufacturing offers the ability to produce intricate geometries, high-strength components, and reliable products. However, powder processing before energy-based binding significantly impacts the final product’s integrity. Processing maps guide efficient process design to minimize defects, but creating them through experimentation alone is challenging due to the wide range of parameters, necessitating a comprehensive computational parametric analysis. In this study, we used the discrete element method to parametrically analyze the powder processing design space in PBF of stainless steel 316L powders. Uniform lattice parameter sweeps are often used for parametric… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Gas-Solid Flow Processes in an Ash Conveying Pipeline with Multiple Feeds

    Kairuo Chen1, He Wang1,*, Xiangliang Wang2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.12, pp. 2721-2739, 2024, DOI:10.32604/fdmp.2024.055174 - 23 December 2024

    Abstract Pneumatic conveying technology, as an efficient material transportation method, has been widely used in various industrial fields. To study the powder transportation in horizontal ash conveying pipes, this study relies on the Computational Particle Fluid Dynamics (CPFD) numerical method. The characteristics of the gas-solid two-phase flow under continuous air supply conditions are analyzed, and the effects on particle movement of factors such as feed port spacing, inlet air velocity, and the number of discharge ports are explored accordingly. The research results show that when the inlet velocity is 5 m/s, adjacent discharged particles come into More >

  • Open Access

    PROCEEDINGS

    Wall-Thickness Dependent Microstructure Evolution of GH4169 Thin-Walled Components Fabricated by Laser Powder Bed Fusion

    Zhancai Zhan1, Penghang Ling1, Wugui Jiang1,*, Tao Chen1, Qinghua Qin2,3, Longhui Mao1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011400

    Abstract In the intricate and multi-physical process of Laser Powder Bed Fusion (LPBF), the microstructure significantly influences the performance of the resulting components, particularly evident in the manufacturing of thin-walled structures. In this paper, a prediction model of microstructure evolution coupled with 3D cellular automaton (CA) and finite element (FE) method for thin-walled components of GH4169 fabricated by LPBF is established. In this model, the multi-layer and multi-track temperature field within the interest region of thin-walled parts is simulated by the FE method. Subsequently, the temperature history is transferred to the CA model for predicting the… More >

  • Open Access

    PROCEEDINGS

    Superior Mechanical Properties of a Zr-Based Bulk Metallic Glass via Laser Powder Bed Fusion Process Control

    Bosong Li1, Jamie J. Kruzic1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-2, 2024, DOI:10.32604/icces.2024.011331

    Abstract Additive manufacturing has made the fabrication of large-dimensioned bulk metallic glasses (BMGs) achievable; however, questions remain regarding how to control the processing parameters to obtain dense and fully amorphous BMGs with desirable mechanical properties. Here, laser powder bed fusion (LPBF) was used to produce dense and fully amorphous Zr59.3Cu28.8Nb1.5Al10.4 BMG samples from two different starting powders within a large processing window of laser powers and scanning speeds. X-ray diffraction (XRD) revealed that fully amorphous materials with high relative densities (>99%) were obtained when the LPBF energy density ranged from ~20 J/mm3 up to ~33 J/mm3 for coarse… More >

  • Open Access

    PROCEEDINGS

    Numerical Study of Fracture Mechanisms in Metal Powder Bed Fusion Additive Manufacturing Processes

    Lu Liu1, Bo Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012741

    Abstract Powder-Bed Fusion (PBF) is a prominent metal additive manufacturing technology known for its adaptability and commercial viability. However, it is often hindered by defects such as voids, un-melted particles, microcracking, and columnar grains, which are generally more pronounced than those found in traditional manufacturing methods. Microcracking, in particular, poses a significant challenge, limiting the use of PBF materials in safety-critical applications across various industries. This study presents an advanced computational framework that effectively addresses the complex interactions of thermal, fluid dynamics, structural mechanics, crystallization, and fracture phenomena at meso and macroscopic levels. This framework has More >

  • Open Access

    PROCEEDINGS

    High-Resolution Multi-Metal 3D Printing: A Novel Approach Using Binder Jet Printing and Selecting Laser Melting in Powder Bed Fusion

    Beng-Loon Aw1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011990

    Abstract This study introduces a novel method that combines Binder Jet Printing (BJP) and Selective Laser Melting (SLM) techniques to achieve unprecedented high-speed and high-resolution 3D printing of fine metal powders in Laser Powder Bed Fusion (LPBF). Our approach comfortably attains a resolution of 0.2 mm, enabling the selective deposition of fine powder (D50: 30 µm) made from multiple materials within a single print layer. We demonstrate the capability of this technique through the printing of a composite structure composed of copper alloy and 18Ni300 Maraging tool steel, showcasing its potential for fast-cooling tooling applications. The More >

  • Open Access

    PROCEEDINGS

    Advanced Powder Fabrication Techniques for Laser Powder Bed Fusion

    Naoyuki Nomura1,*, Mingqi Dong1, Zhenxing Zhou1, Weiwei Zhou1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012381

    Abstract Laser powder bed fusion (L-PBF) exhibits many technological opportunities for producing high-performance metallic parts with tailored architectures. However, fabrication of suitable composite powders possessing good flowability, controllable particle size and distribution is a currently prerequisite and main challenge. In this work, two novel techniques, namely freeze-dry pulsated orifice ejection method (FD-POEM) [1] and ultrafine bubble (UFB)-assisted heteroagglomeration [2], have been developed to fabricate uniform composite powders. By taking MoSiBTiC alloy powders as an example, the working principle of FD-POEM process was firstly illustrated. The spherical FD-POEM particles were consisted of typical mesh structures induced by… More >

  • Open Access

    PROCEEDINGS

    In-Situ Carbide-Reinforced NiCoCr Medium-Entropy Alloy Manufactured by Laser Powder Bed Fusion; Fabrication, Microstructure, Mechanical Property, and High Temperature Oxidation Behavior

    Kee-Ahn Lee1,*, So-Yeon Park1, Soo-Bin Kim1, Young-Kyun Kim1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012196

    Abstract NiCoCr medium-entropy alloys (MEAs) with controlled interstitial C contents were fabricated by using powder bed fusion-type additive manufacturing (AM) process. And the microstructure, mechanical properties, and high temperature oxidation resistance of in-situ carbide-reinforced NiCoCr Medium alloy were investigated. The initial microstructure shows that both AM-built interstitial C-doped MEAs had a heterogeneous grain structure and epitaxial growth grains along the building direction. The analysis of electron channeling contrast images showed a large amount of nano-sized precipitates (in-situ precipitates) distributed at the sub-structure boundaries formed by a dislocation network, and a large number of stacking faults were simultaneously observed inside the sub-structure. A… More >

Displaying 1-10 on page 1 of 64. Per Page