Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access


    Recovery of 3D Tractions Exerted by Cells on Fibrous Extracellular Matrices

    Dawei Song1,*, Nicholas Hugenberg2, Assad A Oberai1

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 45-45, 2019, DOI:10.32604/mcb.2019.07138

    Abstract Tractions exerted by cells on the extracellular matrix (ECM) are critical in many important physiological and pathological processes such as embryonic morphogenesis, cell migration, wound healing, and cancer metastasis. Traction Force Microscopy (TFM) is a robust tool to quantify cellular tractions during cell-matrix interactions. It works by measuring the motion of fiducial markers inside the ECM in response to cellular tractions and using this information to infer the traction field. Most applications of this technique have heretofore assumed that the ECM is homogeneous and isotropic [1], although the native ECM is typically composed of fibrous networks, and thus heterogeneous and… More >

  • Open Access


    Aerodynamic Shape Optimization of Airfoils in Unsteady Flow

    Anant Diwakar1, D. N.Srinath1, Sanjay Mittal1

    CMES-Computer Modeling in Engineering & Sciences, Vol.69, No.1, pp. 61-90, 2010, DOI:10.3970/cmes.2010.069.061

    Abstract Aerodynamic shape optimization of airfoils is carried out for two values of Reynolds numbers: 103 and 104, for an angle of attack of 5o. The objective functions used are (a) maximization of lift (b) minimization of drag and (c) minimization of drag to lift ratio. The surface of the airfoil is parametrized by a 4th order non-uniform rational B-Spline (NURBS) curve with 61 control points. Unlike the efforts in the past, the relatively large number of control points used in this study offer a rich design shape with the possibility of local bumps and valleys on the airfoil surface. The… More >

  • Open Access


    Multi-Point Shape Optimization of Airfoils at Low Reynolds Numbers

    D.N. Srinath1, Sanjay Mittal1, Veera Manek2

    CMES-Computer Modeling in Engineering & Sciences, Vol.51, No.2, pp. 169-190, 2009, DOI:10.3970/cmes.2009.051.169

    Abstract A continuous adjoint method is formulated and implemented for the multi-point shape optimization of airfoils at low Re. The airfoil shape is parametrized with a non-uniform rational B-Spline (NURBS). Optimization studies are carried out for two different objective functions. The first involves an inverse function on the lift coefficient over a range of Re. The objective is to determine a shape that results in a lift coefficient of 0.4 at three values of Re: 10, 100 and 500. The second objective involves a direct function on the lift coefficient over a range of angles of attack,a. The lift coefficient is… More >

  • Open Access


    Acoustic Design Shape and Topology Sensitivity Formulations Based on Adjoint Method and BEM

    T. Matsumoto1, T. Yamada1, T. Takahashi1, C.J. Zheng2, S. Harada1

    CMES-Computer Modeling in Engineering & Sciences, Vol.78, No.2, pp. 77-94, 2011, DOI:10.3970/cmes.2011.078.077

    Abstract Shape design and topology sensitivity formulations for acoustic problems based on adjoint method and the boundary element method are presented and are applied to shape sensitivity analysis and topology optimization of acoustic field. The objective function is assumed to consist only of boundary integrals and quantities defined at certain number of discrete points. The adjoint field is defined so that the sensitivity of the objective function does not include the unknown sensitivity coefficients of the sound pressures and particle velocities on the boundary and in the domain. Since the final sensitivity expression does not have the sensitivity coefficients of the… More >

Displaying 1-10 on page 1 of 4. Per Page