Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (19)
  • Open Access

    ARTICLE

    Shock-Boundary Layer Interaction in Transonic Flows: Evaluation of Grid Resolution and Turbulence Modeling Effects on Numerical Predictions

    Mehmet Numan Kaya*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 327-343, 2025, DOI:10.32604/cmes.2025.072000 - 30 October 2025

    Abstract This study investigates the influence of mesh resolution and turbulence model selection on the accuracy of numerical simulations for transonic flow, with particular emphasis on shock-boundary layer interaction phenomena. Accurate prediction of such flows is notoriously difficult due to the sensitivity to near-wall resolution, global mesh density, and turbulence model assumptions, and this problem motivates the present work. Two solvers were employed, rhoCentralFoam (unsteady) and TSLAeroFoam (steady-state), both are compressible and density-based and implemented within the OpenFOAM framework. The investigation focuses on three different non-dimensional wall distance (y+) values of 1, 2.5 and 5, each implemented… More >

  • Open Access

    ARTICLE

    CFD Simulation of Passenger Car Aerodynamics and Body Parameter Optimization

    Jichao Li, Xuexin Zhu, Cong Zhang, Shiwang Dang, Guang Chen*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.9, pp. 2305-2329, 2025, DOI:10.32604/fdmp.2025.067087 - 30 September 2025

    Abstract The rapid advancement of technology and the increasing speed of vehicles have led to a substantial rise in energy consumption and growing concern over environmental pollution. Beyond the promotion of new energy vehicles, reducing aerodynamic drag remains a critical strategy for improving energy efficiency and lowering emissions. This study investigates the influence of key geometric parameters on the aerodynamic drag of vehicles. A parametric vehicle model was developed, and computational fluid dynamics (CFD) simulations were conducted to analyse variations in the drag coefficient () and pressure distribution across different design configurations. The results reveal that More >

  • Open Access

    ARTICLE

    Uncertainty Quantification of Dynamic Stall Aerodynamics for Large Mach Number Flow around Pitching Airfoils

    Yizhe Han1,2, Guangjing Huang1, Fei Xiao1, Zhiyin Huang3,*, Yuting Dai1

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.7, pp. 1657-1671, 2025, DOI:10.32604/fdmp.2025.067528 - 31 July 2025

    Abstract During high-speed forward flight, helicopter rotor blades operate across a wide range of Reynolds and Mach numbers. Under such conditions, their aerodynamic performance is significantly influenced by dynamic stall—a complex, unsteady flow phenomenon highly sensitive to inlet conditions such as Mach and Reynolds numbers. The key features of three-dimensional blade stall can be effectively represented by the dynamic stall behavior of a pitching airfoil. In this study, we conduct an uncertainty quantification analysis of dynamic stall aerodynamics in high-Mach-number flows over pitching airfoils, accounting for uncertainties in inlet parameters. A computational fluid dynamics (CFD) model… More >

  • Open Access

    ARTICLE

    Numerical Analysis of the Aerodynamic Performance of an Ahmed Body Fitted with Spoilers of Different Opening Areas

    Haichao Zhou*, Wei Zhang, Tinghui Huang, Haoran Li

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1113-1131, 2025, DOI:10.32604/fdmp.2025.064991 - 30 May 2025

    Abstract The configuration of a spoiler plays a crucial role in the aerodynamics of a vehicle. In particular, investigating the impact of spoiler design on aerodynamic performance is essential for effectively reducing drag and optimizing efficiency. This study focuses on the 35° Ahmed body as the test model and examines six different spoiler types mounted on its slant surface. Using the Lattice Boltzmann Method (LBM) in XFlow and the Large Eddy Simulation (LES) technique, the aerodynamic effects of these spoilers were analyzed. The numerical approach was validated against published experimental data. Results indicate that aerodynamic drag More >

  • Open Access

    ARTICLE

    The Effect of Lateral Offset Distance on the Aerodynamics and Fuel Economy of Vehicle Queues

    Lili Lei*, Ze Li, Haichao Zhou, Jing Wang, Wei Lin

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.1, pp. 147-163, 2024, DOI:10.32604/fdmp.2023.030158 - 08 November 2023

    Abstract The vehicle industry is always in search of breakthrough energy-saving and emission-reduction technologies. In recent years, vehicle intelligence has progressed considerably, and researchers are currently trying to take advantage of these developments. Here we consider the case of many vehicles forming a queue, i.e., vehicles traveling at a predetermined speed and distance apart. While the majority of existing studies on this subject have focused on the influence of the longitudinal vehicle spacing, vehicle speed, and the number of vehicles on aerodynamic drag and fuel economy, this study considers the lateral offset distance of the vehicle More >

  • Open Access

    ARTICLE

    CFD-Based Optimization of a Shell-and-Tube Heat Exchanger

    Juanjuan Wang*, Jiangping Nan, Yanan Wang

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.11, pp. 2761-2775, 2023, DOI:10.32604/fdmp.2023.021175 - 18 September 2023

    Abstract The main objective of this study is the technical optimization of a Shell-and-Tube Heat Exchanger (STHE). In order to do so, a simulation model is introduced that takes into account the related gas-phase circulation. Then, simulation verification experiments are designed in order to validate the model. The results show that the temperature field undergoes strong variations in time when an inlet wind speed of 6 m/s is considered, while the heat transfer error reaches a minimum of 5.1%. For an inlet velocity of 9 m/s, the heat transfer drops to the lowest point, while the More >

  • Open Access

    PROCEEDINGS

    Understanding of Airfoil Characteristics at High Mach-Low Reynolds Numbers

    Zhaolin Chen1,*, Xiaohui Wei1, Tianhang Xiao1, Ning Qin2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09976

    Abstract A computational study has been conducted on various airfoils to simulate flows at low Reynolds numbers 17,000 and 21,000 with Mach number changes from 0.25 to 0.85 to provide understanding and guidance for Mars rotory wing designs. The computational fluid dynamics tool used in this study is a Reynolds-averaged Navier–Stokes solver with a transition model (k-ω SST γ-Reθ). The airfoils investigated in this study include NACA airfoils (4, 5, and 6% camber), UltraThin airfoils, and thin cambered plates (3% camber, but various maximum camber locations). Airfoils were examined for lift and drag performance as well… More >

  • Open Access

    ARTICLE

    Passive Control of Base Pressure in a Converging-Diverging Nozzle with Area Ratio 2.56 at Mach 1.8

    Nur Husnina Muhamad Zuraidi1, Sher Afghan Khan1,*, Abdul Aabid2,*, Muneer Baig2, Istiyaq Mudassir Shaiq3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.3, pp. 807-829, 2023, DOI:10.32604/fdmp.2023.023246 - 29 September 2022

    Abstract In this study, a duct is considered and special attention is paid to a passive method for the control of the base pressure relying on the use of a cavity with a variable aspect ratio. The Mach number considered is 1.8, and the area ratio of the duct is 2.56. In particular, two cavities are examined, their sizes being 3:3 and 6:3. The used L/D spans the interval 1–10 while the NPRs (nozzle pressure ratio) range from 2 to 9. The results show that the control becomes effective once the nozzles are correctly expanded or More >

  • Open Access

    ARTICLE

    Comparative Study of Machine Learning Modeling for Unsteady Aerodynamics

    Mohammad Alkhedher*

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1901-1920, 2022, DOI:10.32604/cmc.2022.025334 - 24 February 2022

    Abstract Modern fighters are designed to fly at high angle of attacks reaching 90 deg as part of their routine maneuvers. These maneuvers generate complex nonlinear and unsteady aerodynamic loading. In this study, different aerodynamic prediction tools are investigated to achieve a model which is highly accurate, less computational, and provides a stable prediction of associated unsteady aerodynamics that results from high angle of attack maneuvers. These prediction tools include Artificial Neural Networks (ANN) model, Adaptive Neuro Fuzzy Logic Inference System (ANFIS), Fourier model, and Polynomial Classifier Networks (PCN). The main aim of the prediction model… More >

  • Open Access

    ARTICLE

    Effects of Heaving Motion on the Aerodynamic Performance of a Double-Element Wing in Ground Effect

    Ioannis Oxyzoglou*, Zheng-Tong Xie

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.6, pp. 1093-1114, 2020, DOI:10.32604/fdmp.2020.012237 - 17 December 2020

    Abstract The broad implication of the paper is to elucidate the significance of the dynamic heaving motion in the aerodynamic performance of multi-element wings, currently considered as a promising aspect for the improvement of the aerodynamic correlation between CFD, wind tunnel and track testing in race car applications. The relationship between the varying aerodynamic forces, the vortex shedding, and the unsteady pressure field of a heaving double-element wing is investigated for a range of mean ride heights, frequencies, and amplitudes, using a two-dimensional (2D) unsteady Reynolds-averaged Navier-Stokes (URANS) approach and an overset mesh method for modelling… More >

Displaying 1-10 on page 1 of 19. Per Page