Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (271)
  • Open Access


    Embracing the Future: AI and ML Transforming Urban Environments in Smart Cities

    Gagan Deep*, Jyoti Verma

    Journal on Artificial Intelligence, Vol.5, pp. 57-73, 2023, DOI:10.32604/jai.2023.043329

    Abstract This research explores the increasing importance of Artificial Intelligence (AI) and Machine Learning (ML) with relation to smart cities. It discusses the AI and ML’s ability to revolutionize various aspects of urban environments, including infrastructure, governance, public safety, and sustainability. The research presents the definition and characteristics of smart cities, highlighting the key components and technologies driving initiatives for smart cities. The methodology employed in this study involved a comprehensive review of relevant literature, research papers, and reports on the subject of AI and ML in smart cities. Various sources were consulted to gather information on the integration of AI… More >

  • Open Access


    Grad-CAM: Understanding AI Models

    Shuihua Wang1,2, Yudong Zhang2,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1321-1324, 2023, DOI:10.32604/cmc.2023.041419

    Abstract This article has no abstract. More >

  • Open Access


    Deep Fakes in Healthcare: How Deep Learning Can Help to Detect Forgeries

    Alaa Alsaheel, Reem Alhassoun, Reema Alrashed, Noura Almatrafi, Noura Almallouhi, Saleh Albahli*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2461-2482, 2023, DOI:10.32604/cmc.2023.040257

    Abstract With the increasing use of deep learning technology, there is a growing concern over creating deep fake images and videos that can potentially be used for fraud. In healthcare, manipulating medical images could lead to misdiagnosis and potentially life-threatening consequences. Therefore, the primary purpose of this study is to explore the use of deep learning algorithms to detect deep fake images by solving the problem of recognizing the handling of samples of cancer and other diseases. Therefore, this research proposes a framework that leverages state-of-the-art deep convolutional neural networks (CNN) and a large dataset of authentic and deep fake medical… More >

  • Open Access


    Explainable Artificial Intelligence-Based Model Drift Detection Applicable to Unsupervised Environments

    Yongsoo Lee, Yeeun Lee, Eungyu Lee, Taejin Lee*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1701-1719, 2023, DOI:10.32604/cmc.2023.040235

    Abstract Cybersecurity increasingly relies on machine learning (ML) models to respond to and detect attacks. However, the rapidly changing data environment makes model life-cycle management after deployment essential. Real-time detection of drift signals from various threats is fundamental for effectively managing deployed models. However, detecting drift in unsupervised environments can be challenging. This study introduces a novel approach leveraging Shapley additive explanations (SHAP), a widely recognized explainability technique in ML, to address drift detection in unsupervised settings. The proposed method incorporates a range of plots and statistical techniques to enhance drift detection reliability and introduces a drift suspicion metric that considers… More >

  • Open Access


    Deep Learning-Based Action Classification Using One-Shot Object Detection

    Hyun Yoo1, Seo-El Lee2, Kyungyong Chung3,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1343-1359, 2023, DOI:10.32604/cmc.2023.039263

    Abstract Deep learning-based action classification technology has been applied to various fields, such as social safety, medical services, and sports. Analyzing an action on a practical level requires tracking multiple human bodies in an image in real-time and simultaneously classifying their actions. There are various related studies on the real-time classification of actions in an image. However, existing deep learning-based action classification models have prolonged response speeds, so there is a limit to real-time analysis. In addition, it has low accuracy of action of each object if multiple objects appear in the image. Also, it needs to be improved since it… More >

  • Open Access


    Improved Transportation Model with Internet of Things Using Artificial Intelligence Algorithm

    Ayman Khallel Al-Ani1,*, Shams Ul Arfeen Laghari2, Hariprasath Manoharan3, Shitharth Selvarajan4, Mueen Uddin5

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2261-2279, 2023, DOI:10.32604/cmc.2023.038534

    Abstract In this paper, the application of transportation systems in real-time traffic conditions is evaluated with data handling representations. The proposed method is designed in such a way as to detect the number of loads that are present in a vehicle where functionality tasks are computed in the system. Compared to the existing approach, the design model in the proposed method is made by dividing the computing areas into several cluster regions, thereby reducing the complex monitoring system where control errors are minimized. Furthermore, a route management technique is combined with Artificial Intelligence (AI) algorithm to transmit the data to appropriate… More >

  • Open Access


    Seeded Transfer Learning for Enhanced Attack Trace and Effective Deception

    Jalaj Pateria1,*, Laxmi Ahuja1, Subhranil Som2

    Journal of Cyber Security, Vol.4, No.4, pp. 223-238, 2022, DOI:10.32604/jcs.2023.040186

    Abstract Cyberattacks have reached their peak during COVID-19, and intruders urge to gain the upper hand in the cybersecurity battlefield, even gaining dominance. Now intruders are trying harder to elude behavior analysis techniques, which in turn gets organization security to come for a toss. This phenomenon is even more prevalent in agentless environments (IOT devices, mobile devices), where we do not have any access to edge devices and rely on packet data to predict any attack and its actors. In this paper, we shall be discussing enhancing the accuracy of anomalous behavior detection techniques for efficient threat intelligence and revamping deception… More >

  • Open Access


    Multiple Data Augmentation Strategy for Enhancing the Performance of YOLOv7 Object Detection Algorithm

    Abdulghani M. Abdulghani, Mokhles M. Abdulghani, Wilbur L. Walters, Khalid H. Abed*

    Journal on Artificial Intelligence, Vol.5, pp. 15-30, 2023, DOI:10.32604/jai.2023.041341

    Abstract The object detection technique depends on various methods for duplicating the dataset without adding more images. Data augmentation is a popular method that assists deep neural networks in achieving better generalization performance and can be seen as a type of implicit regularization. This method is recommended in the case where the amount of high-quality data is limited, and gaining new examples is costly and time-consuming. In this paper, we trained YOLOv7 with a dataset that is part of the Open Images dataset that has 8,600 images with four classes (Car, Bus, Motorcycle, and Person). We used five different data augmentations… More >

  • Open Access


    AI Safety Approach for Minimizing Collisions in Autonomous Navigation

    Abdulghani M. Abdulghani, Mokhles M. Abdulghani, Wilbur L. Walters, Khalid H. Abed*

    Journal on Artificial Intelligence, Vol.5, pp. 1-14, 2023, DOI:10.32604/jai.2023.039786

    Abstract Autonomous agents can explore the environment around them when equipped with advanced hardware and software systems that help intelligent agents minimize collisions. These systems are developed under the term Artificial Intelligence (AI) safety. AI safety is essential to provide reliable service to consumers in various fields such as military, education, healthcare, and automotive. This paper presents the design of an AI safety algorithm for safe autonomous navigation using Reinforcement Learning (RL). Machine Learning Agents Toolkit (ML-Agents) was used to train the agent with a proximal policy optimizer algorithm with an intrinsic curiosity module (PPO + ICM). This training aims to improve AI… More >

  • Open Access


    SlowFast Based Real-Time Human Motion Recognition with Action Localization

    Gyu-Il Kim1, Hyun Yoo2, Kyungyong Chung3,*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2135-2152, 2023, DOI:10.32604/csse.2023.041030

    Abstract Artificial intelligence is increasingly being applied in the field of video analysis, particularly in the area of public safety where video surveillance equipment such as closed-circuit television (CCTV) is used and automated analysis of video information is required. However, various issues such as data size limitations and low processing speeds make real-time extraction of video data challenging. Video analysis technology applies object classification, detection, and relationship analysis to continuous 2D frame data, and the various meanings within the video are thus analyzed based on the extracted basic data. Motion recognition is key in this analysis. Motion recognition is a challenging… More >

Displaying 1-10 on page 1 of 271. Per Page