Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (324)
  • Open Access

    ARTICLE

    Efficient Intelligent E-Learning Behavior-Based Analytics of Student’s Performance Using Deep Forest Model

    Raed Alotaibi1, Omar Reyad2,3, Mohamed Esmail Karar4,*

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1133-1147, 2024, DOI:10.32604/csse.2024.053358

    Abstract E-learning behavior data indicates several students’ activities on the e-learning platform such as the number of accesses to a set of resources and number of participants in lectures. This article proposes a new analytics system to support academic evaluation for students via e-learning activities to overcome the challenges faced by traditional learning environments. The proposed e-learning analytics system includes a new deep forest model. It consists of multistage cascade random forests with minimal hyperparameters compared to traditional deep neural networks. The developed forest model can analyze each student’s activities during the use of an e-learning… More >

  • Open Access

    ARTICLE

    Modern Mobile Malware Detection Framework Using Machine Learning and Random Forest Algorithm

    Mohammad Ababneh*, Ayat Al-Droos, Ammar El-Hassan

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1171-1191, 2024, DOI:10.32604/csse.2024.052875

    Abstract With the high level of proliferation of connected mobile devices, the risk of intrusion becomes higher. Artificial Intelligence (AI) and Machine Learning (ML) algorithms started to feature in protection software and showed effective results. These algorithms are nonetheless hindered by the lack of rich datasets and compounded by the appearance of new categories of malware such that the race between attackers’ malware, especially with the assistance of Artificial Intelligence tools and protection solutions makes these systems and frameworks lose effectiveness quickly. In this article, we present a framework for mobile malware detection based on a… More >

  • Open Access

    ARTICLE

    FedAdaSS: Federated Learning with Adaptive Parameter Server Selection Based on Elastic Cloud Resources

    Yuwei Xu, Baokang Zhao*, Huan Zhou, Jinshu Su

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 609-629, 2024, DOI:10.32604/cmes.2024.053462

    Abstract The rapid expansion of artificial intelligence (AI) applications has raised significant concerns about user privacy, prompting the development of privacy-preserving machine learning (ML) paradigms such as federated learning (FL). FL enables the distributed training of ML models, keeping data on local devices and thus addressing the privacy concerns of users. However, challenges arise from the heterogeneous nature of mobile client devices, partial engagement of training, and non-independent identically distributed (non-IID) data distribution, leading to performance degradation and optimization objective bias in FL training. With the development of 5G/6G networks and the integration of cloud computing… More >

  • Open Access

    ARTICLE

    MV-Honeypot: Security Threat Analysis by Deploying Avatar as a Honeypot in COTS Metaverse Platforms

    Arpita Dinesh Sarang1, Mohsen Ali Alawami2, Ki-Woong Park3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 655-669, 2024, DOI:10.32604/cmes.2024.053434

    Abstract Nowadays, the use of Avatars that are unique digital depictions has increased by users to access Metaverse—a virtual reality environment—through multiple devices and for various purposes. Therefore, the Avatar and Metaverse are being developed with a new theory, application, and design, necessitating the association of more personal data and devices of targeted users every day. This Avatar and Metaverse technology explosion raises privacy and security concerns, leading to cyber attacks. MV-Honeypot, or Metaverse-Honeypot, as a commercial off-the-shelf solution that can counter these cyber attack-causing vulnerabilities, should be developed. To fill this gap, we study user’s More > Graphic Abstract

    MV-Honeypot: Security Threat Analysis by Deploying Avatar as a Honeypot in COTS Metaverse Platforms

  • Open Access

    ARTICLE

    Artificial Intelligence Prediction of One-Part Geopolymer Compressive Strength for Sustainable Concrete

    Mohamed Abdel-Mongy1, Mudassir Iqbal2, M. Farag3, Ahmed. M. Yosri1,*, Fahad Alsharari1, Saif Eldeen A. S. Yousef4

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 525-543, 2024, DOI:10.32604/cmes.2024.052505

    Abstract Alkali-activated materials/geopolymer (AAMs), due to their low carbon emission content, have been the focus of recent studies on ecological concrete. In terms of performance, fly ash and slag are preferred materials for precursors for developing a one-part geopolymer. However, determining the optimum content of the input parameters to obtain adequate performance is quite challenging and scarcely reported. Therefore, in this study, machine learning methods such as artificial neural networks (ANN) and gene expression programming (GEP) models were developed using MATLAB and GeneXprotools, respectively, for the prediction of compressive strength under variable input materials and content… More >

  • Open Access

    ARTICLE

    Explainable Artificial Intelligence (XAI) Model for Cancer Image Classification

    Amit Singhal1, Krishna Kant Agrawal2, Angeles Quezada3, Adrian Rodriguez Aguiñaga4, Samantha Jiménez4, Satya Prakash Yadav5,,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 401-441, 2024, DOI:10.32604/cmes.2024.051363

    Abstract The use of Explainable Artificial Intelligence (XAI) models becomes increasingly important for making decisions in smart healthcare environments. It is to make sure that decisions are based on trustworthy algorithms and that healthcare workers understand the decisions made by these algorithms. These models can potentially enhance interpretability and explainability in decision-making processes that rely on artificial intelligence. Nevertheless, the intricate nature of the healthcare field necessitates the utilization of sophisticated models to classify cancer images. This research presents an advanced investigation of XAI models to classify cancer images. It describes the different levels of explainability… More >

  • Open Access

    REVIEW

    Evolution and Prospects of Foundation Models: From Large Language Models to Large Multimodal Models

    Zheyi Chen1,, Liuchang Xu1,, Hongting Zheng1, Luyao Chen1, Amr Tolba2,3, Liang Zhao4, Keping Yu5,*, Hailin Feng1,*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 1753-1808, 2024, DOI:10.32604/cmc.2024.052618

    Abstract Since the 1950s, when the Turing Test was introduced, there has been notable progress in machine language intelligence. Language modeling, crucial for AI development, has evolved from statistical to neural models over the last two decades. Recently, transformer-based Pre-trained Language Models (PLM) have excelled in Natural Language Processing (NLP) tasks by leveraging large-scale training corpora. Increasing the scale of these models enhances performance significantly, introducing abilities like context learning that smaller models lack. The advancement in Large Language Models, exemplified by the development of ChatGPT, has made significant impacts both academically and industrially, capturing widespread… More >

  • Open Access

    ARTICLE

    HybridGAD: Identification of AI-Generated Radiology Abstracts Based on a Novel Hybrid Model with Attention Mechanism

    Tuğba Çelikten1, Aytuğ Onan2,*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3351-3377, 2024, DOI:10.32604/cmc.2024.051574

    Abstract The purpose of this study is to develop a reliable method for distinguishing between AI-generated, paraphrased, and human-written texts, which is crucial for maintaining the integrity of research and ensuring accurate information flow in critical fields such as healthcare. To achieve this, we propose HybridGAD, a novel hybrid model that combines Long Short-Term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), and Bidirectional Gated Recurrent Unit (Bi-GRU) architectures with an attention mechanism. Our methodology involves training this hybrid model on a dataset of radiology abstracts, encompassing texts generated by AI, paraphrased by AI, and written by humans. The… More >

  • Open Access

    REVIEW

    AI-Driven Learning Management Systems: Modern Developments, Challenges and Future Trends during the Age of ChatGPT

    Sameer Qazi1,*, Muhammad Bilal Kadri2, Muhammad Naveed1,*, Bilal A. Khawaja3, Sohaib Zia Khan4, Muhammad Mansoor Alam5,6,7, Mazliham Mohd Su’ud6

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3289-3314, 2024, DOI:10.32604/cmc.2024.048893

    Abstract COVID-19 pandemic restrictions limited all social activities to curtail the spread of the virus. The foremost and most prime sector among those affected were schools, colleges, and universities. The education system of entire nations had shifted to online education during this time. Many shortcomings of Learning Management Systems (LMSs) were detected to support education in an online mode that spawned the research in Artificial Intelligence (AI) based tools that are being developed by the research community to improve the effectiveness of LMSs. This paper presents a detailed survey of the different enhancements to LMSs, which… More >

  • Open Access

    REVIEW

    Artificial Intelligence for Maximizing Agricultural Input Use Efficiency: Exploring Nutrient, Water and Weed Management Strategies

    Sumit Sow1,#, Shivani Ranjan1,#,*, Mahmoud F. Seleiman2,3, Hiba M. Alkharabsheh4,*, Mukesh Kumar1, Navnit Kumar1, Smruti Ranjan Padhan5, Dhirendra Kumar Roy1, Dibyajyoti Nath6, Harun Gitari7, Daniel O. Wasonga8

    Phyton-International Journal of Experimental Botany, Vol.93, No.7, pp. 1569-1598, 2024, DOI:10.32604/phyton.2024.052241

    Abstract Agriculture plays a crucial role in the economy, and there is an increasing global emphasis on automating agricultural processes. With the tremendous increase in population, the demand for food and employment has also increased significantly. Agricultural methods traditionally used to meet these requirements are no longer adequate, requiring solutions to issues such as excessive herbicide use and the use of chemical fertilizers. Integration of technologies such as the Internet of Things, wireless communication, machine learning, artificial intelligence (AI), and deep learning shows promise in addressing these challenges. However, there is a lack of comprehensive documentation… More >

Displaying 1-10 on page 1 of 324. Per Page