Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    REVIEW

    A Review of Basic Mechanical Properties of Bamboo Scrimber Based on Small-Scale Specimens

    Xin Xue1,2,3, Haitao Li1,2,3,*, Rodolfo Lorenzo4

    Journal of Renewable Materials, Vol.12, No.4, pp. 869-894, 2024, DOI:10.32604/jrm.2024.029602

    Abstract This review summarizes the existing knowledge about the mechanical properties of bamboo scrimber (BS) in literature. According to literature reviews, the strength of BS under different load modes is affected by a series of factors, such as the type of original bamboo, growth position, resin content, treatment method and density. Therefore, different production processes can be adopted according to different requirements, and bamboo scrimbers can also be classified accordingly. In addition, this review summarizes the changes in different factors considered by scholars in the research on the mechanical properties of BS, so that readers can More > Graphic Abstract

    A Review of Basic Mechanical Properties of Bamboo Scrimber Based on Small-Scale Specimens

  • Open Access

    ARTICLE

    Theoretical Analysis on Deflection and Bearing Capacity of Prestressed Bamboo-Steel Composite Beams

    Qifeng Shan1,2, Ming Mao2, Yushun Li3,*

    Journal of Renewable Materials, Vol.12, No.1, pp. 149-166, 2024, DOI:10.32604/jrm.2023.029445

    Abstract A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study. The deflection analysis considers the influences of interface slippage and shear deformation. Furthermore, the calculation model for flexural capacity is proposed considering the two stages of loading. The theoretical results are verified with 8 specimens considering different prestressed load levels, load schemes, and prestress schemes. The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams. For deflection analysis, the method considering the slippage and More >

  • Open Access

    ARTICLE

    Dynamic Testing of Elastic Modulus, Shear Modulus, and Poisson’s Ratio of Bamboo Scrimber

    Xiaoyu Gu1, Linbi Chen2, Seithati Mapesela3, Zheng Wang1,*, Aijin Zhou4

    Journal of Renewable Materials, Vol.11, No.12, pp. 4197-4210, 2023, DOI:10.32604/jrm.2023.028768

    Abstract The bamboo scrimber is an anisotropic material. The elastic constant values of the bamboo scrimber specimens measured by the dynamic and static methods are consistent, and the dynamic test method has the advantages of rapidity, simplicity, good repeatability, and high precision. Bamboo scrimber has strong potential as a building material, and its elastic constant is an important index to measure its mechanical properties. To quickly, simply, non-destructively, and accurately detect the elastic constant of the bamboo scrimber, they were dynamically tested by the free plate transient excitation method and cantilever plate torsional vibration method. The More >

  • Open Access

    ARTICLE

    Acoustic Emission Characteristics of Different Bamboo and Wood Materials in Bending Failure Process

    Ting Wang1, Zhiqiang Wang1,*, Yin Yang1, Jianhui Zhou2,*

    Journal of Renewable Materials, Vol.10, No.2, pp. 527-540, 2022, DOI:10.32604/jrm.2022.017955

    Abstract The acoustic emission (AE) technique can perform non-destructive monitoring of the internal damage development of bamboo and wood materials. In this experiment, the mechanical properties of different bamboo and wood (bamboo scrimber, bamboo plywood and SPF (Spruce-pine-fir) dimension lumber) during four-point loading tests were compared. The AE activities caused by loadings were investigated through the single parameter analysis and K-means cluster analysis. Results showed that the bending strength of bamboo scrimber was 3.6 times that of bamboo plywood and 2.7 times that of SPF dimension lumber, respectively. Due to the high strength and toughness of… More > Graphic Abstract

    Acoustic Emission Characteristics of Different Bamboo and Wood Materials in Bending Failure Process

  • Open Access

    ARTICLE

    Mechanical Properties and Constitutive Relationship of the High-Durable Parallel Strand Bamboo

    Yousef Y. Sewar1, Zhancheng Zhang1, Xinmiao Meng1,*, Mohammed Y. Wahan1, Hanxiao Qi1,2, Qahtan M. Al-Shami1,3, Shijiao Luo1

    Journal of Renewable Materials, Vol.10, No.1, pp. 219-235, 2022, DOI:10.32604/jrm.2021.016013

    Abstract Engineered bamboo has recently received lots of attention of civil engineers and professional researchers due to its better mechanical performance than that of softwood timber. Parallel strand bamboo is one important part of engineered bamboo for its excellent durable performance compared to the laminated veneer bamboo. The required curing temperature in hot-pressing process is usually higher than 120°C to reduce the content of nutritional ingredients and hemy cellulose, and to avoid the decay from the environment and insects. Nonetheless, the appearance of engineered bamboo gets darker with the increase of temperature during the hot-pressing process.… More > Graphic Abstract

    Mechanical Properties and Constitutive Relationship of the High-Durable Parallel Strand Bamboo

  • Open Access

    REVIEW

    Review on the Application of Bamboo-Based Materials in Construction Engineering

    Biqing Shu1,2, Zhongping Xiao2, Lu Hong1, Sujun Zhang2, Chen Li2, Naiqiang Fu2, Xiaoning Lu1,*

    Journal of Renewable Materials, Vol.8, No.10, pp. 1215-1242, 2020, DOI:10.32604/jrm.2020.011263

    Abstract Due to the continuously increasing demand for building materials across the world, it is necessary to use renewable materials in place of the existing nonrenewable materials in construction projects. Bamboo is a fast-growing flowering plant that may be used as a renewable material in construction. The use of bamboo in the construction of buildings can improve its long-term carbon fixation capacity and economic benefits. Although bamboo has the advantages of superior performance, low carbon content, high energy-saving and emission-reducing capacity, bamboo is an anisotropic material, which has many factors affecting its material performance, large variability More >

  • Open Access

    ARTICLE

    Experimental and Theoretical Study on Bonding Properties between Steel Bar and Bamboo Scrimber

    Xiangya Luo, Haiqing Ren, Yong Zhong*

    Journal of Renewable Materials, Vol.8, No.7, pp. 773-787, 2020, DOI:10.32604/jrm.2020.09414

    Abstract To further verify the feasibility of newly designed reinforced bamboo scrimber composite (RBSC) beams used in building construction, the bonding properties between steel bar and bamboo scrimber were investigated by anti-pulling tests. Results indicated that the anti-pulling mechanical properties were signifi- cantly correlated to the diameter, thread form and buried depth of steel bar, forming density of bamboo scrimber as well as the heat treatment of bamboo bundle. There were two failure modes for anti-pulling tests: the tensile fracture and pulling out of steel bar. Both the ultimate load and average shear strength of anti-pulling More >

  • Open Access

    ARTICLE

    Mechanical Properties and Stress Strain Relationship Models for Bamboo Scrimber

    Haitao Li1,*, Huizhong Zhang1, Zhenyu Qiu1, Jingwen Su2, Dongdong Wei3, Rodolfo Lorenzo4, Conggan Yuan3, Hongzheng Liu5, Chungui Zhou6

    Journal of Renewable Materials, Vol.8, No.1, pp. 13-27, 2020, DOI:10.32604/jrm.2020.09341

    Abstract In order to investigate the basic mechanical properties and stress strain relationship model for bamboo scrimber manufactured based on a new technique, a large quantities of experiments have been carried out. Based on the analysis of the test results, the following conclusions can be drawn. Two main typical failure modes were classified for bamboo scrimber specimens both under tension parallel to grain and tension perpendicular to grain. Brittle failure happened for all tensile tests. The slope values for the elastic stages have bigger discreteness compared with those for the specimens under tensile parallel to grain.… More >

  • Open Access

    ARTICLE

    Flexural Performance of CFRP-Bamboo Scrimber Composite Beams

    Xizhi Wu1,2, Xueyou Huang3, Xianjun Li1,*, Yiqiang Wu1

    Journal of Renewable Materials, Vol.7, No.12, pp. 1295-1307, 2019, DOI:10.32604/jrm.2019.07839

    Abstract This study presents a new structure made up of bamboo scrimber and carbon fiber reinforced polymer (CFRP) to address the low stiffness and strength of bamboo scrimbers. Three-point bending test and finite element model were conducted to study the failure mode, strain-displacement relationship, load-displacement relationship and relationships between strain distribution, contact pressure and deflection, and adhesive debonding. The results indicated that the flexural modulus and static flexural strength of the composite beams were effectively increased thanks to the CFRP sheets. The flexural modulus of the composite specimens were 2.33-2.94 times that of bamboo scrimber beams, More >

Displaying 1-10 on page 1 of 9. Per Page