Jinbo Yang1, Hai Huang1, Lailai Yin2, Jiaxing Qu3, Wanjuan Xie4,*
CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3085-3099, 2024, DOI:10.32604/cmes.2023.045417
Abstract Diagnosing multi-stage diseases typically requires doctors to consider multiple data sources, including clinical symptoms, physical signs, biochemical test results, imaging findings, pathological examination data, and even genetic data. When applying machine learning modeling to predict and diagnose multi-stage diseases, several challenges need to be addressed. Firstly, the model needs to handle multimodal data, as the data used by doctors for diagnosis includes image data, natural language data, and structured data. Secondly, privacy of patients’ data needs to be protected, as these data contain the most sensitive and private information. Lastly, considering the practicality of the… More >