Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access


    Improved Prediction and Understanding of Glass-Forming Ability Based on Random Forest Algorithm

    Chenjing Su1, Xiaoyu Li1,*, Mengru Li2, Qinsheng Zhu2, Hao Fu2, Shan Yang3

    Journal of Quantum Computing, Vol.3, No.2, pp. 79-87, 2021, DOI:10.32604/jqc.2021.016651

    Abstract As an ideal material, bulk metallic glass (MG) has a wide range of applications because of its unique properties such as structural, functional and biomedical materials. However, it is difficult to predict the glass-forming ability (GFA) even given the criteria in theory and this problem greatly limits the application of bulk MG in industrial field. In this work, the proposed model uses the random forest classification method which is one of machine learning methods to solve the GFA prediction for binary metallic alloys. Compared with the previous SVM algorithm models of all features combinations, this More >

  • Open Access


    A meshless solution of binary alloy solidification

    Božidar Šarler, Gregor Kosec, Robert Vertnik

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.11, No.2, pp. 53-54, 2009, DOI:10.3970/icces.2009.011.053

    Abstract This paper explores the application of the mesh-free Local Radial Basis Function Collocation Method (LRBFCM) [1] in solution of coupled heat transfer and fluid flow problems associated with solidification of a binary alloy. The involved temperature, velocity, species and pressure fields are represented on overlapping sub-domains through collocation by using multiquadrics Radial Basis Functions (RBF). The involved first and second derivatives of the fields are calculated from the respective derivatives of the RBF’s. The energy and momentum equations are solved throughexplicit time stepping. The pressure-velocitycouplingis calculated iteratively, with pressure correction, predicted from the local continuity… More >

  • Open Access


    Adaptive 3D finite elements with high aspect ratio for dendritic growth of a binary alloy including fluid flow induced by shrinkage

    Jacek Narski1,2, Marco Picasso1

    FDMP-Fluid Dynamics & Materials Processing, Vol.3, No.1, pp. 49-64, 2007, DOI:10.3970/fdmp.2007.003.049

    Abstract An adaptive phase field model for the solidification of binary alloys in three space dimensions is presented. The fluid flow in the liquid due to different liquid/solid densities is taken into account. The unknowns are the phase field, the alloy concentration and the velocity/pressure in the liquid. Continuous, piecewise linear finite elements are used for the space discretization, a semi-implicit scheme is used for time discretization. An adaptive method allows the number of degrees of freedom to be reduced, the mesh tetrahedrons having high aspect ratio whenever needed. Numerical results show that our method is More >

  • Open Access


    A Meshless Approach Towards Solution of Macrosegregation Phenomena

    Gregor Kosec1, Miha Založnik2, Božidar Šarler1, Hervé Combeau2

    CMC-Computers, Materials & Continua, Vol.22, No.2, pp. 169-196, 2011, DOI:10.3970/cmc.2011.022.169

    Abstract The simulation of macrosegregation as a consequence of solidification of a binary Al-4.5%Cu alloy in a 2-dimensional rectangular enclosure is tackled in the present paper. Coupled volume-averaged governing equations for mass, energy, momentum and species transfer are considered. The phase properties are resolved from the Lever solidification rule, the mushy zone is modeled by the Darcy law and the liquid phase is assumed to behave like an incompressible Newtonian fluid. Double diffusive effects in the melt are modeled by the thermal and solutal Boussinesq hypothesis. The physical model is solved by the novel Local Radial… More >

Displaying 1-10 on page 1 of 4. Per Page