Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access


    Enhanced Adaptive Brain-Computer Interface Approach for Intelligent Assistance to Disabled Peoples

    Ali Usman1, Javed Ferzund1, Ahmad Shaf1, Muhammad Aamir1, Samar Alqhtani2,*, Khlood M. Mehdar3, Hanan Talal Halawani4, Hassan A. Alshamrani5, Abdullah A. Asiri5, Muhammad Irfan6

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1355-1369, 2023, DOI:10.32604/csse.2023.034682

    Abstract Assistive devices for disabled people with the help of Brain-Computer Interaction (BCI) technology are becoming vital bio-medical engineering. People with physical disabilities need some assistive devices to perform their daily tasks. In these devices, higher latency factors need to be addressed appropriately. Therefore, the main goal of this research is to implement a real-time BCI architecture with minimum latency for command actuation. The proposed architecture is capable to communicate between different modules of the system by adopting an automotive, intelligent data processing and classification approach. Neuro-sky mind wave device has been used to transfer the data to our implemented server… More >

  • Open Access


    A Machine Learning Approach for Artifact Removal from Brain Signal

    Sandhyalati Behera, Mihir Narayan Mohanty*

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1455-1467, 2023, DOI:10.32604/csse.2023.029649

    Abstract Electroencephalography (EEG), helps to analyze the neuronal activity of a human brain in the form of electrical signals with high temporal resolution in the millisecond range. To extract clean clinical information from EEG signals, it is essential to remove unwanted artifacts that are due to different causes including at the time of acquisition. In this piece of work, the authors considered the EEG signal contaminated with Electrocardiogram (ECG) artifacts that occurs mostly in cardiac patients. The clean EEG is taken from the openly available Mendeley database whereas the ECG signal is collected from the Physionet database to create artifacts in… More >

  • Open Access


    Performance Analysis of Machine Learning Algorithms for Classifying Hand Motion-Based EEG Brain Signals

    Ayman Altameem1, Jaideep Singh Sachdev2, Vijander Singh2, Ramesh Chandra Poonia3, Sandeep Kumar4, Abdul Khader Jilani Saudagar5,*

    Computer Systems Science and Engineering, Vol.42, No.3, pp. 1095-1107, 2022, DOI:10.32604/csse.2022.023256

    Abstract Brain-computer interfaces (BCIs) records brain activity using electroencephalogram (EEG) headsets in the form of EEG signals; these signals can be recorded, processed and classified into different hand movements, which can be used to control other IoT devices. Classification of hand movements will be one step closer to applying these algorithms in real-life situations using EEG headsets. This paper uses different feature extraction techniques and sophisticated machine learning algorithms to classify hand movements from EEG brain signals to control prosthetic hands for amputated persons. To achieve good classification accuracy, denoising and feature extraction of EEG signals is a significant step. We… More >

  • Open Access


    Electroencephalogram (EEG) Brain Signals to Detect Alcoholism Based on Deep Learning

    Emad-ul-Haq Qazi, Muhammad Hussain*, Hatim A. AboAlsamh

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 3329-3348, 2021, DOI:10.32604/cmc.2021.013589

    Abstract The detection of alcoholism is of great importance due to its effects on individuals and society. Automatic alcoholism detection system (AADS) based on electroencephalogram (EEG) signals is effective, but the design of a robust AADS is a challenging problem. AADS’ current designs are based on conventional, hand-engineered methods and restricted performance. Driven by the excellent deep learning (DL) success in many recognition tasks, we implement an AAD system based on EEG signals using DL. A DL model requires huge number of learnable parameters and also needs a large dataset of EEG signals for training which is not easy to obtain… More >

Displaying 1-10 on page 1 of 4. Per Page