Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (872)
  • Open Access

    ARTICLE

    Artificial Intelligence (AI)-Enabled Unmanned Aerial Vehicle (UAV) Systems for Optimizing User Connectivity in Sixth-Generation (6G) Ubiquitous Networks

    Zeeshan Ali Haider1, Inam Ullah2,*, Ahmad Abu Shareha3, Rashid Nasimov4, Sufyan Ali Memon5,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-16, 2026, DOI:10.32604/cmc.2025.071042 - 10 November 2025

    Abstract The advent of sixth-generation (6G) networks introduces unprecedented challenges in achieving seamless connectivity, ultra-low latency, and efficient resource management in highly dynamic environments. Although fifth-generation (5G) networks transformed mobile broadband and machine-type communications at massive scales, their properties of scaling, interference management, and latency remain a limitation in dense high mobility settings. To overcome these limitations, artificial intelligence (AI) and unmanned aerial vehicles (UAVs) have emerged as potential solutions to develop versatile, dynamic, and energy-efficient communication systems. The study proposes an AI-based UAV architecture that utilizes cooperative reinforcement learning (CoRL) to manage an autonomous network.… More >

  • Open Access

    ARTICLE

    An Improved Reinforcement Learning-Based 6G UAV Communication for Smart Cities

    Vi Hoai Nam1, Chu Thi Minh Hue2, Dang Van Anh1,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-15, 2026, DOI:10.32604/cmc.2025.070605 - 10 November 2025

    Abstract Unmanned Aerial Vehicles (UAVs) have become integral components in smart city infrastructures, supporting applications such as emergency response, surveillance, and data collection. However, the high mobility and dynamic topology of Flying Ad Hoc Networks (FANETs) present significant challenges for maintaining reliable, low-latency communication. Conventional geographic routing protocols often struggle in situations where link quality varies and mobility patterns are unpredictable. To overcome these limitations, this paper proposes an improved routing protocol based on reinforcement learning. This new approach integrates Q-learning with mechanisms that are both link-aware and mobility-aware. The proposed method optimizes the selection of… More >

  • Open Access

    ARTICLE

    Hybrid AI-IoT Framework with Digital Twin Integration for Predictive Urban Infrastructure Management in Smart Cities

    Abdullah Alourani1, Mehtab Alam2,*, Ashraf Ali3, Ihtiram Raza Khan4, Chandra Kanta Samal2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-32, 2026, DOI:10.32604/cmc.2025.070161 - 10 November 2025

    Abstract The evolution of cities into digitally managed environments requires computational systems that can operate in real time while supporting predictive and adaptive infrastructure management. Earlier approaches have often advanced one dimension—such as Internet of Things (IoT)-based data acquisition, Artificial Intelligence (AI)-driven analytics, or digital twin visualization—without fully integrating these strands into a single operational loop. As a result, many existing solutions encounter bottlenecks in responsiveness, interoperability, and scalability, while also leaving concerns about data privacy unresolved. This research introduces a hybrid AI–IoT–Digital Twin framework that combines continuous sensing, distributed intelligence, and simulation-based decision support. The… More >

  • Open Access

    ARTICLE

    A Q-Learning Improved Particle Swarm Optimization for Aircraft Pulsating Assembly Line Scheduling Problem Considering Skilled Operator Allocation

    Xiaoyu Wen1,2, Haohao Liu1,2, Xinyu Zhang1,2, Haoqi Wang1,2, Yuyan Zhang1,2, Guoyong Ye1,2, Hongwen Xing3, Siren Liu3, Hao Li1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-27, 2026, DOI:10.32604/cmc.2025.069492 - 10 November 2025

    Abstract Aircraft assembly is characterized by stringent precedence constraints, limited resource availability, spatial restrictions, and a high degree of manual intervention. These factors lead to considerable variability in operator workloads and significantly increase the complexity of scheduling. To address this challenge, this study investigates the Aircraft Pulsating Assembly Line Scheduling Problem (APALSP) under skilled operator allocation, with the objective of minimizing assembly completion time. A mathematical model considering skilled operator allocation is developed, and a Q-Learning improved Particle Swarm Optimization algorithm (QLPSO) is proposed. In the algorithm design, a reverse scheduling strategy is adopted to effectively… More >

  • Open Access

    ARTICLE

    M2ATNet: Multi-Scale Multi-Attention Denoising and Feature Fusion Transformer for Low-Light Image Enhancement

    Zhongliang Wei1,*, Jianlong An1, Chang Su2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.069335 - 10 November 2025

    Abstract Images taken in dim environments frequently exhibit issues like insufficient brightness, noise, color shifts, and loss of detail. These problems pose significant challenges to dark image enhancement tasks. Current approaches, while effective in global illumination modeling, often struggle to simultaneously suppress noise and preserve structural details, especially under heterogeneous lighting. Furthermore, misalignment between luminance and color channels introduces additional challenges to accurate enhancement. In response to the aforementioned difficulties, we introduce a single-stage framework, M2ATNet, using the multi-scale multi-attention and Transformer architecture. First, to address the problems of texture blurring and residual noise, we design… More >

  • Open Access

    ARTICLE

    Recurrent MAPPO for Joint UAV Trajectory and Traffic Offloading in Space-Air-Ground Integrated Networks

    Zheyuan Jia, Fenglin Jin*, Jun Xie, Yuan He

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-15, 2026, DOI:10.32604/cmc.2025.069128 - 10 November 2025

    Abstract This paper investigates the traffic offloading optimization challenge in Space-Air-Ground Integrated Networks (SAGIN) through a novel Recursive Multi-Agent Proximal Policy Optimization (RMAPPO) algorithm. The exponential growth of mobile devices and data traffic has substantially increased network congestion, particularly in urban areas and regions with limited terrestrial infrastructure. Our approach jointly optimizes unmanned aerial vehicle (UAV) trajectories and satellite-assisted offloading strategies to simultaneously maximize data throughput, minimize energy consumption, and maintain equitable resource distribution. The proposed RMAPPO framework incorporates recurrent neural networks (RNNs) to model temporal dependencies in UAV mobility patterns and utilizes a decentralized multi-agent More >

  • Open Access

    ARTICLE

    DRL-Based Cross-Regional Computation Offloading Algorithm

    Lincong Zhang1, Yuqing Liu1, Kefeng Wei2, Weinan Zhao1, Bo Qian1,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.069108 - 10 November 2025

    Abstract In the field of edge computing, achieving low-latency computational task offloading with limited resources is a critical research challenge, particularly in resource-constrained and latency-sensitive vehicular network environments where rapid response is mandatory for safety-critical applications. In scenarios where edge servers are sparsely deployed, the lack of coordination and information sharing often leads to load imbalance, thereby increasing system latency. Furthermore, in regions without edge server coverage, tasks must be processed locally, which further exacerbates latency issues. To address these challenges, we propose a novel and efficient Deep Reinforcement Learning (DRL)-based approach aimed at minimizing average… More >

  • Open Access

    ARTICLE

    EHDC-YOLO: Enhancing Object Detection for UAV Imagery via Multi-Scale Edge and Detail Capture

    Zhiyong Deng1, Yanchen Ye2, Jiangling Guo1,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.069090 - 10 November 2025

    Abstract With the rapid expansion of drone applications, accurate detection of objects in aerial imagery has become crucial for intelligent transportation, urban management, and emergency rescue missions. However, existing methods face numerous challenges in practical deployment, including scale variation handling, feature degradation, and complex backgrounds. To address these issues, we propose Edge-enhanced and Detail-Capturing You Only Look Once (EHDC-YOLO), a novel framework for object detection in Unmanned Aerial Vehicle (UAV) imagery. Based on the You Only Look Once version 11 nano (YOLOv11n) baseline, EHDC-YOLO systematically introduces several architectural enhancements: (1) a Multi-Scale Edge Enhancement (MSEE) module… More >

  • Open Access

    ARTICLE

    UGEA-LMD: A Continuous-Time Dynamic Graph Representation Enhancement Framework for Lateral Movement Detection

    Jizhao Liu, Yuanyuan Shao*, Shuqin Zhang, Fangfang Shan, Jun Li

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.068998 - 10 November 2025

    Abstract Lateral movement represents the most covert and critical phase of Advanced Persistent Threats (APTs), and its detection still faces two primary challenges: sample scarcity and “cold start” of new entities. To address these challenges, we propose an Uncertainty-Driven Graph Embedding-Enhanced Lateral Movement Detection framework (UGEA-LMD). First, the framework employs event-level incremental encoding on a continuous-time graph to capture fine-grained behavioral evolution, enabling newly appearing nodes to retain temporal contextual awareness even in the absence of historical interactions and thereby fundamentally mitigating the cold-start problem. Second, in the embedding space, we model the dependency structure among… More >

  • Open Access

    ARTICLE

    Energy Optimization for Autonomous Mobile Robot Path Planning Based on Deep Reinforcement Learning

    Longfei Gao*, Weidong Wang, Dieyun Ke

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-15, 2026, DOI:10.32604/cmc.2025.068873 - 10 November 2025

    Abstract At present, energy consumption is one of the main bottlenecks in autonomous mobile robot development. To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown and complex environments, this paper proposes an Attention-Enhanced Dueling Deep Q-Network (AD-Dueling DQN), which integrates a multi-head attention mechanism and a prioritized experience replay strategy into a Dueling-DQN reinforcement learning framework. A multi-objective reward function, centered on energy efficiency, is designed to comprehensively consider path length, terrain slope, motion smoothness, and obstacle avoidance, enabling optimal low-energy trajectory generation in 3D space from the… More >

Displaying 1-10 on page 1 of 872. Per Page