Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (50)
  • Open Access

    ARTICLE

    IMPACT OF THERMAL RADIATION AND CHEMICAL REACTION ON UNSTEADY 2D FLOW OF MAGNETIC-NANOFLUIDS OVER AN ELONGATED PLATE EMBEDDED WITH FERROUS NANOPARTICLES

    S.P. Samrat, C. Sulochana* , G.P. Ashwinkumar

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-8, 2018, DOI:10.5098/hmt.10.31

    Abstract This study reports the flow, thermal and concentration attributes of magnetic-nanofluids past an elongated plate with thermal radiation and chemical reaction. The flow considered is two-dimensional and time-dependent. The pressure gradient and ohmic heating terms are neglected in this analysis. The flow governing PDEs are transformed into ODEs using appropriate conversions. Further, the set of ODEs are solved analytically using perturbation technique. The flow quantities such as velocity, thermal and concentration fields are discussed under the influence of various pertinent parameters namely volume fraction of nanoparticle, magnetic field, stretching parameter, Soret number, radiation and chemical reaction with the assistance of… More >

  • Open Access

    ARTICLE

    UNSTEADY MHD FREE CONVECTION JEFFERY FLUID FLOW OF RADIATING AND REACTING PAST A VERTICAL POROUS PLATE IN SLIP-FLOW REGIME WITH HEAT SOURCE

    K. Venkateswara Rajua,*, A. Parandhamaa , M.C. Rajub , K. Ramesh Babua

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-8, 2018, DOI:10.5098/hmt.10.25

    Abstract This manuscript presents an analytical investigation on unsteady MHD free convective viscous incompressible flow of electrically conducting Jeffery fluid with heat source, past an infinite vertical porous flat plate in slip flow regime. A uniform magnetic field perpendicular to the plate is applied. The presence of thermal radiation, heat source, radiation absorption and chemical reaction are included. The effects of flow parameters and thermo physical properties on the velocity temperature and concentration fields across the boundary layer are investigated. The forms of the wall Shear stress, Nusselt number and Sherwood number are derived. The results are shown in figures and… More >

  • Open Access

    ARTICLE

    MULTIPLE SLIPS AND CHEMICAL REACTION EFFECTS ON MHD STAGNATION POINT FLOW OF CASSON FLUID OVER A STRETCHING SHEET WITH VISCOUS AND JOULES HEATING

    G. Vinod Kumar, R. V. M. S. S. Kiran Kumar* , S. V. K. Varma

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-8, 2018, DOI:10.5098/hmt.10.23

    Abstract The steady boundary layer stagnation flow of a Casson fluid over a stretching sheet with slips boundary conditions in the presence of viscous dissipation, Joule heating and the first order destructive chemical reaction is analyzed. The governing flow problem is based on momentum equation, energy equation, and mass diffusion equation and these are further simplified with the help of similarity transformations. The reduced, resulting highly nonlinear coupled ordinary differential equations are solved using the Matlab bvp4c package. The effects of various parameters on the dimensionless velocity, temperature, and concentration as well as on the skin friction coefficient and the rate… More >

  • Open Access

    ARTICLE

    MAGNETOHYDRO DYNAMIC FLOW OF BLOOD IN A PERMEABLE INCLINED STRETCHING SURFACE WITH VISCOUS DISSIPATION, NON-UNIFORM HEAT SOURCE/SINK AND CHEMICAL REACTION

    S.R.R. Reddya , P. Bala Anki Reddya,*, S. Suneethab

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-10, 2018, DOI:10.5098/hmt.10.22

    Abstract Present work aims to investigate the blood stream in a permeable vessel in the presence of an external magnetic field with heat and mass transfer. The instability in the coupled flow and temperature fields is considered to be produced due to the time-dependent extending velocity and the surface temperature of the vessel. The non-uniform heat source/sink effects on a chemically responded blood stream and heat viscous. This study is of potential value in the clinical healing of cardiovascular disorders accompanied by accelerated circulation. The problem is treated mathematically by reducing it to a system of joined non-linear differential equations, which… More >

  • Open Access

    ARTICLE

    INDUCED MAGNETIC FIELD INTERACTION IN FREE CONVECTIVE HEAT ANDMASS TRANSFER FLOW OF A CHEMICALLY REACTIVE HEAT GENERATING FLUID WITH THERMO-DIFFUSION AND DIFFUSION-THERMO EFFECTS

    Sanjib Senguptaa,*, Amrit Karmakarb

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-12, 2018, DOI:10.5098/hmt.10.19

    Abstract An exact analysis is made to study the magnetohydrodynamics (MHD) free convective flow of an electrically conducting and chemically reacting Newtonian, incompressible, viscous fluid, flowing past an infinite vertical plate with combined heat and mass transfer. An inclined magnetic field of uniform strength is applied to the plate. As the value of the magnetic Reynolds number is of comparable order of magnitude, the effect of induced magnetic field is being considered and on the other hand due to weak voltage difference caused by the very low polarization charges, the influence of electric field is considered to be neglected. Cross-diffusion effects,… More >

  • Open Access

    ARTICLE

    COMPUTATION OF UNSTEADY MHD MIXED CONVECTIVE HEAT AND MASS TRANSFER IN DISSIPATIVE REACTIVE MICROPOLAR FLOW CONSIDERING SORET AND DUFOUR EFFECTS

    M.D. Shamshuddina,*, A.J. Chamkhab,c, Thirupathi Thummad, M.C. Rajue

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-15, 2018, DOI:10.5098/hmt.10.15

    Abstract In the current paper, a finite element computational solution is conducted for MHD double diffusive flow characterizing dissipative micropolar mixed convective heat and mass transfer adjacent to a vertical porous plate embedded in a saturated porous medium. The micropolar fluid is also chemically reacting, both Soret and Dufour effects and also heat absorption included. The governing partial differential equations for momentum, heat, angular momentum and species conservation are transformed into dimensionless form under the assumption of low Reynolds number with appropriate dimensionless quantities. The emerging boundary value problem is then solved numerically with an efficient computational finite element method employing… More >

  • Open Access

    ARTICLE

    IMPACT OF CATTANEO-CHRISTOV HEAT FLUX IN THE CASSON FLUID FLOW OVER A STRETCHING SURFACE WITH ALIGNED MAGNETIC FIELD AND HOMOGENEOUS - HETEROGENEOUS CHEMICAL REACTION

    P. Bala Anki Reddya,*, S. Suneethab

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-9, 2018, DOI:10.5098/hmt.10.7

    Abstract This work concentrates on the effects of homogeneous-heterogeneous chemical reactions on MHD boundary layer flow of Casson fluid over a stretching surface. Cattaneo-Christov heat flux model is considered instead of classical Fourier’s law to explore the heat transfer phenomena. Appropriate similarity transformations are used to convert the governing partial differential equations into a system of coupled non-linear differential equations. The resulting coupled non-linear differential equations are solved numerically by using the fourth order Runge-Kutta method with shooting technique. The impact of significant parameters on velocity, temperature, concentration, skin friction coefficient and the Nusselt number are presented graphically and in tabular… More >

  • Open Access

    ARTICLE

    MHD VISCOUS CASSONFLUID FLOW IN THE PRESENCE OF A TEMPERATURE GRADIENT DEPENDENT HEAT SINK WITH PRESCRIBED HEAT AND MASS FLUX

    S. Palaniammal1 , K. Saritha2,*

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-10, 2018, DOI:10.5098/hmt.10.1

    Abstract This paper investigates heat and mass transfer of a MHD Casson fluid over a permeable stretching surface in the presence of a temperature gradient heat sink. The effects of viscous dissipation, thermal radiation and chemical reaction are also taken into the consideration. The relevant similarity transformations are used to reduce the governing equations into a system of nonlinear ordinary differential equations and then solved analytically. The influence of various physical parameters on the velocity, temperature, concentration, skin friction coefficient, Nusselt and Sherwood numbers are investigated. The numerical results of skin friction factor, Nusselt and Sherwood number are compared with the… More >

  • Open Access

    ARTICLE

    ANALYTICAL INVESTIGATIONS OF DIFFUSION THERMO EFFECTS ON UNSTEADY FREE CONVECTION FLOW PAST AN ACCELERATED VERTICAL PLATE

    E. Kumaresana , A .G. Vijaya Kumara,*, J. Prakashb

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-9, 2018, DOI:10.5098/hmt.10.2

    Abstract The objective of this study is to investigate diffusion-thermo and radiation effects on unsteady free convection chemically reacting fluid flow past an accelerated infinite plate with variable temperature and mass diffusion under the influence of uniform transverse magnetic field when the magnetic lines of force are fixed relative to the fluid or to the plate. . Two important cases, when the magnetic lines of force are being fixed relative to the fluid (K=0) or to the moving plate (K=1) have been considered. A general exact solution of the dimensionless governing partial differential equations is obtained by Laplace transform technique without… More >

  • Open Access

    ARTICLE

    HEAT AND MASS TRANSFER ANALYSIS ON MHD MIXED CONVECTION FLOW OF RADIATIVE CHEMICALLY HEAT GENERATING FLUID WITH VISCOUS DISSIPATION AND THERMO-DIFFUSION EFFECT

    Sanjib Senguptaa,*, Amrit Karmakarb

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-13, 2018, DOI:10.5098/hmt.11.30

    Abstract In this paper an analysis on heat and mass transfer is made to study magnetohydrodynamic (MHD) mixed convective flow of an incompressible viscous fluid flowing past an inclined plate. A magnetic field of uniform strength is applied to the plate to influence the flow. Due to weak voltage differences caused by the very low polarization charges, the influence of electric field is considered to be neglected. Again large temperature gradient ensures cross diffusion effect like thermo-diffusion (Soret) in the field. The governed set of non-linear partial differential equations is solved by developing a multi-parameter asymptotic perturbation scheme. The influence of… More >

Displaying 11-20 on page 2 of 50. Per Page