Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (369)
  • Open Access

    ARTICLE

    The Cloud Manufacturing Resource Scheduling Optimization Method Based on Game Theory

    Xiaoxuan Yang*, Zhou Fang

    Journal on Artificial Intelligence, Vol.4, No.4, pp. 229-243, 2022, DOI:10.32604/jai.2022.035368

    Abstract In order to optimize resource integration and optimal scheduling problems in the cloud manufacturing environment, this paper proposes to use load balancing, service cost and service quality as optimization goals for resource scheduling, however, resource providers have resource utilization requirements for cloud manufacturing platforms. In the process of resource optimization scheduling, the interests of all parties have conflicts of interest, which makes it impossible to obtain better optimization results for resource scheduling. Therefore, a multithreaded auto-negotiation method based on the Stackelberg game is proposed to resolve conflicts of interest in the process of resource scheduling. The cloud manufacturing platform first… More >

  • Open Access

    ARTICLE

    Data Layout and Scheduling Tasks in a Meteorological Cloud Environment

    Kunfu Wang, Yongsheng Hao, Jie Cao*

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 1033-1052, 2023, DOI:10.32604/iasc.2023.038036

    Abstract Meteorological model tasks require considerable meteorological basis data to support their execution. However, if the task and the meteorological datasets are located on different clouds, that enhances the cost, execution time, and energy consumption of execution meteorological tasks. Therefore, the data layout and task scheduling may work together in the meteorological cloud to avoid being in various locations. To the best of our knowledge, this is the first paper that tries to schedule meteorological tasks with the help of the meteorological data set layout. First, we use the FP-Growth-M (frequent-pattern growth for meteorological model datasets) method to mine the relationship… More >

  • Open Access

    ARTICLE

    Modified Computational Ranking Model for Cloud Trust Factor Using Fuzzy Logic

    Lei Shen*, Ting Huang, Nishui Cai, Hao Wu

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 507-524, 2023, DOI:10.32604/iasc.2023.037640

    Abstract Through the use of the internet and cloud computing, users may access their data as well as the programmes they have installed. It is now more challenging than ever before to choose which cloud service providers to take advantage of. When it comes to the dependability of the cloud infrastructure service, those who supply cloud services, as well as those who seek cloud services, have an equal responsibility to exercise utmost care. Because of this, further caution is required to ensure that the appropriate values are reached in light of the ever-increasing need for correct decision-making. The purpose of this… More >

  • Open Access

    ARTICLE

    Levy Flight Firefly Based Efficient Resource Allocation for Fog Environment

    Anu*, Anita Singhrova

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 199-219, 2023, DOI:10.32604/iasc.2023.035389

    Abstract Fog computing is an emergent and powerful computing paradigm to serve latency-sensitive applications by executing internet of things (IoT) applications in the proximity of the network. Fog computing offers computational and storage services between cloud and terminal devices. However, an efficient resource allocation to execute the IoT applications in a fog environment is still challenging due to limited resource availability and low delay requirement of services. A large number of heterogeneous shareable resources makes fog computing a complex environment. In the sight of these issues, this paper has proposed an efficient levy flight firefly-based resource allocation technique. The levy flight… More >

  • Open Access

    ARTICLE

    Improved Harris Hawks Optimization Algorithm Based Data Placement Strategy for Integrated Cloud and Edge Computing

    V. Nivethitha*, G. Aghila

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 887-904, 2023, DOI:10.32604/iasc.2023.034247

    Abstract Cloud computing is considered to facilitate a more cost-effective way to deploy scientific workflows. The individual tasks of a scientific workflow necessitate a diversified number of large states that are spatially located in different datacenters, thereby resulting in huge delays during data transmission. Edge computing minimizes the delays in data transmission and supports the fixed storage strategy for scientific workflow private datasets. Therefore, this fixed storage strategy creates huge amount of bottleneck in its storage capacity. At this juncture, integrating the merits of cloud computing and edge computing during the process of rationalizing the data placement of scientific workflows and… More >

  • Open Access

    ARTICLE

    Auto-Scaling Framework for Enhancing the Quality of Service in the Mobile Cloud Environments

    Yogesh Kumar1,*, Jitender Kumar1, Poonam Sheoran2

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5785-5800, 2023, DOI:10.32604/cmc.2023.039276

    Abstract On-demand availability and resource elasticity features of Cloud computing have attracted the focus of various research domains. Mobile cloud computing is one of these domains where complex computation tasks are offloaded to the cloud resources to augment mobile devices’ cognitive capacity. However, the flexible provisioning of cloud resources is hindered by uncertain offloading workloads and significant setup time of cloud virtual machines (VMs). Furthermore, any delays at the cloud end would further aggravate the miseries of real-time tasks. To resolve these issues, this paper proposes an auto-scaling framework (ACF) that strives to maintain the quality of service (QoS) for the… More >

  • Open Access

    ARTICLE

    An Effective Security Comparison Protocol in Cloud Computing

    Yuling Chen1,2, Junhong Tao1, Tao Li1,*, Jiangyuan Cai3, Xiaojun Ren4

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5141-5158, 2023, DOI:10.32604/cmc.2023.037783

    Abstract With the development of cloud computing technology, more and more data owners upload their local data to the public cloud server for storage and calculation. While this can save customers’ operating costs, it also poses privacy and security challenges. Such challenges can be solved using secure multi-party computation (SMPC), but this still exposes more security issues. In cloud computing using SMPC, clients need to process their data and submit the processed data to the cloud server, which then performs the calculation and returns the results to each client. Each client and server must be honest. If there is cooperation or… More >

  • Open Access

    ARTICLE

    MEC-IoT-Healthcare: Analysis and Prospects

    Hongyuan Wang1, Mohammed Dauwed2, Imran Khan3, Nor Samsiah Sani4,*, Hasmila Amirah Omar4, Hirofumi Amano5, Samih M. Mostafa6

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 6219-6250, 2023, DOI:10.32604/cmc.2022.030958

    Abstract Physical sensors, intelligent sensors, and output recommendations are all examples of smart health technology that can be used to monitor patients’ health and change their behavior. Smart health is an Internet-of-Things (IoT)-aware network and sensing infrastructure that provides real-time, intelligent, and ubiquitous healthcare services. Because of the rapid development of cloud computing, as well as related technologies such as fog computing, smart health research is progressively moving in the right direction. Cloud, fog computing, IoT sensors, blockchain, privacy and security, and other related technologies have been the focus of smart health research in recent years. At the moment, the focus… More >

  • Open Access

    ARTICLE

    Adaptive Kernel Firefly Algorithm Based Feature Selection and Q-Learner Machine Learning Models in Cloud

    I. Mettildha Mary1,*, K. Karuppasamy2

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 2667-2685, 2023, DOI:10.32604/csse.2023.031114

    Abstract CC’s (Cloud Computing) networks are distributed and dynamic as signals appear/disappear or lose significance. MLTs (Machine learning Techniques) train datasets which sometime are inadequate in terms of sample for inferring information. A dynamic strategy, DevMLOps (Development Machine Learning Operations) used in automatic selections and tunings of MLTs result in significant performance differences. But, the scheme has many disadvantages including continuity in training, more samples and training time in feature selections and increased classification execution times. RFEs (Recursive Feature Eliminations) are computationally very expensive in its operations as it traverses through each feature without considering correlations between them. This problem can… More >

  • Open Access

    ARTICLE

    Edge of Things Inspired Robust Intrusion Detection Framework for Scalable and Decentralized Applications

    Abdulaziz Aldribi1,2,*, Aman Singh2,3, Jose Breñosa3,4

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3865-3881, 2023, DOI:10.32604/csse.2023.037748

    Abstract Ubiquitous data monitoring and processing with minimal latency is one of the crucial challenges in real-time and scalable applications. Internet of Things (IoT), fog computing, edge computing, cloud computing, and the edge of things are the spine of all real-time and scalable applications. Conspicuously, this study proposed a novel framework for a real-time and scalable application that changes dynamically with time. In this study, IoT deployment is recommended for data acquisition. The Pre-Processing of data with local edge and fog nodes is implemented in this study. The threshold-oriented data classification method is deployed to improve the intrusion detection mechanism’s performance.… More >

Displaying 1-10 on page 1 of 369. Per Page  

Share Link