Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (16)
  • Open Access

    ARTICLE

    From Ordered to Disordered: The Effect of Microstructure on Composite Mechanical Performance

    L.B. Borkowski1, K.C. Liu1, A. Chattopadhyay1

    CMC-Computers, Materials & Continua, Vol.37, No.3, pp. 161-193, 2013, DOI:10.3970/cmc.2013.037.161

    Abstract The microstructural variation in fiber-reinforced composites has a direct relationship with its local and global mechanical performance. When micromechanical modeling techniques for unidirectional composites assume a uniform and periodic arrangement of fibers, the bounds and validity of this assumption must be quantified. The goal of this research is to quantify the influence of microstructural randomness on effective homogeneous response and local inelastic behavior. The results indicate that microstructural progression from ordered to disordered decreases the tensile modulus by 5%, increases the shear modulus by 10%, and substantially increases the magnitude of local inelastic fields. The More >

  • Open Access

    ABSTRACT

    CUDA Techniques in Computational Mechanics

    Peng Wang

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.20, No.4, pp. 117-118, 2011, DOI:10.3970/icces.2011.020.117

    Abstract Current trends in high performance computing (HPC) are moving towards the availability of several cores on the same chip of contemporary processors in order to achieve speed-up through the extraction of potential fine-grain parallelism of applications. The trend is led by GPUs, which have been developed exclusively for computational tasks as massively-parallel co-processors to the CPU. During 2010 an extensive set of new HPC architectural feature were developed in the third generation of NVIDIA GPUs (Fermi), giving computational mechanics an opportunity to expand use of GPU modelling and simulation.

    This presentation will examine examples relevant More >

  • Open Access

    ARTICLE

    Meshless Unsteady Thermo-Elastoplastic Analysis by Triple-Reciprocity Boundary Element Method

    Yoshihiro OCHIAI1

    CMES-Computer Modeling in Engineering & Sciences, Vol.79, No.2, pp. 83-102, 2011, DOI:10.3970/cmes.2011.079.083

    Abstract In general, internal cells are required to solve unsteady thermo-elasto -plastic problems using a conventional boundary element method (BEM). However, in this case, the merit of BEM, which is the easy preparation of data, is lost. The conventional multiple-reciprocity boundary element method (MRBEM) cannot be used to solve thermo-elastoplastic problems, because the distribution of initial stress cannot be determined analytically. In this paper, it is shown that two-dimensional unsteady thermo-elastoplastic problems can be solved without the use of internal cells by using the triple-reciprocity BEM and a thin plate spline. The initial stress formulation is More >

  • Open Access

    ARTICLE

    Analysis of Dynamic Fracture with Cohesive Crack Segment Method

    H.X. Wang, S.X. Wang

    CMES-Computer Modeling in Engineering & Sciences, Vol.35, No.3, pp. 253-274, 2008, DOI:10.3970/cmes.2008.035.253

    Abstract In the meshfree cohesive crack method, the discrete crack is modeled by a set of cohesive crack segments which can be arbitrarily oriented. Propagation of the crack is achieved by activation of crack surfaces at individual nodes, so no representation of the crack surface is needed. The crack is modeled by a local enrichment of the test and trial functions with sign function, so that discontinuities are along the direction of the crack. A set of cracking rules is developed to avoid spurious cracking. More >

  • Open Access

    ABSTRACT

    About the POD Model Reduction in Computational Mechanics for Nonlinear Continuous Dynamical Systems

    R. Sampaio1, C. Soize2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.2, No.4, pp. 93-100, 2007, DOI:10.3970/icces.2007.002.093

    Abstract An analysis of the efficiency of the reduced models constructed using the POD-basis and the LIN-basis is presented in nonlinear dynamics for continuous elastic systems discretized by the finite element method. The POD-basis is the basis constructed with the POD method while the LIN-basis is the basis derived from the generalized eigenvalue problem associated with the underlying linear conservative part of the system and usually called the eigenmodes of vibration. The efficiency of the POD-basis or the LIN-basis is related to the speed of convergence in the frequency domain of the solution constructed with the More >

  • Open Access

    EDITORIAL

    Preface: International Workshop on "Development and Advancement of Computational Mechanics'', April 22-23, 2005

    Hiroshi Okada1

    CMES-Computer Modeling in Engineering & Sciences, Vol.10, No.3, pp. 185-186, 2005, DOI:10.3970/cmes.2005.010.185

    Abstract This article has no abstract. More >

Displaying 11-20 on page 2 of 16. Per Page