Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (108)
  • Open Access

    ARTICLE

    Experiments and Analyses on Heat Transfer Characteristics from a Solid Wall to a Strip-Shaped Wick Structure

    Kenta Hashimoto1, Guohui Sun1, Yasushi Koito2,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.3, pp. 687-702, 2024, DOI:10.32604/fhmt.2024.052928

    Abstract Centered or striped wick structures have been used to develop ultrathin heat pipes. Differing from traditional heat pipes, the centered or striped wick structures leave noncontact container surfaces with the wick structure. In this study, experiments and numerical analyses were conducted to investigate the influence of these noncontact surfaces. In the experiments, a strip-shaped wick structure was placed vertically, the top was sandwiched between wider rods and the bottom was immersed in a working fluid. The rod width was greater than the wick width; thus, noncontact surfaces were left between the rod and the wick… More >

  • Open Access

    ARTICLE

    Enhancing Hygrothermal Performance in Multi-Zone Constructions through Phase Change Material Integration

    Abir Abboud1, Zakaria Triki1, Rachid Djeffal2, Sidi Mohammed El Amine Bekkouche2, Hichem Tahraoui1,3,4, Abdeltif Amrane4, Aymen Amin Assadi5, Lotfi Khozami5, Jie Zhang6,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.3, pp. 769-789, 2024, DOI:10.32604/fhmt.2024.050330

    Abstract As buildings evolve to meet the challenges of energy efficiency and indoor comfort, phase change materials (PCM) emerge as a promising solution due to their ability to store and release latent heat. This paper explores the transformative impact of incorporating PCM on the hygrothermal dynamics of multi-zone constructions. The study focuses on analyzing heat transfer, particularly through thermal conduction, in a wall containing PCM. A novel approach was proposed, wherein the studied system (sensitive balance) interacts directly with a latent balance to realistically define the behavior of specific humidity and mass flow rates. In addition, More >

  • Open Access

    ARTICLE

    Finite Difference-Peridynamic Differential Operator for Solving Transient Heat Conduction Problems

    Chunlei Ruan1,2,*, Cengceng Dong1, Zeyue Zhang1, Boyu Chen1, Zhijun Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2707-2728, 2024, DOI:10.32604/cmes.2024.050003

    Abstract Transient heat conduction problems widely exist in engineering. In previous work on the peridynamic differential operator (PDDO) method for solving such problems, both time and spatial derivatives were discretized using the PDDO method, resulting in increased complexity and programming difficulty. In this work, the forward difference formula, the backward difference formula, and the centered difference formula are used to discretize the time derivative, while the PDDO method is used to discretize the spatial derivative. Three new schemes for solving transient heat conduction equations have been developed, namely, the forward-in-time and PDDO in space (FT-PDDO) scheme,… More >

  • Open Access

    PROCEEDINGS

    Investigation of Pore-Scale THMC Acid Fracturing Process Considering Heat Conduction Anisotropy

    Kaituo Jiao1, Dongxu Han2,*, Bo Yu2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-5, 2023, DOI:10.32604/icces.2023.09168

    Abstract Acid fracturing is critical to improving the connectivity inside underground reservoirs, which involves a complex thermal-hydro-mechanical-chemical (THMC) coupling process, especially deep underground. Heat conduction anisotropy is one of the intrinsic properties of rock. It determines the heat response distribution inside the rock and alters the temperature evolution on the reactive surface of fractures and pores. In another way, the rock dissolution rate is closely related to the reactive surface temperature. Predictably, heat conduction anisotropy leads to different rock dissolution morphologies from that of the heat conduction isotropy situation, then the cracks distribution and permeability of… More >

  • Open Access

    PROCEEDINGS

    Multi-Scale Topology Optimization Method Considering Multiple Structural Performances

    Wenjun Chen1, Yingjun Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09096

    Abstract The rapid development of topology optimization has given birth to a large amount of different topology optimization methods, and each of them can manage a class of corresponding engineering problems. However, structures need to meet a variety of requirements in engineering application, such as lightweight and multiple load-bearing performance. To design composite structures that have multiple structural properties, a new multi-scale topology optimization method considering multiple structural performances is proposed in this paper. Based on the fitting functions of the result set and the bisection method, a new method to determine the weight coefficient is… More >

  • Open Access

    ARTICLE

    An Efficient Approach for Solving One-Dimensional Fractional Heat Conduction Equation

    Iqbal M. Batiha1,2,*, Iqbal H. Jebril1, Mohammad Zuriqat3, Hamza S. Kanaan4, Shaher Momani5,*

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 487-504, 2023, DOI:10.32604/fhmt.2023.045021

    Abstract Several researchers have dealt with the one-dimensional fractional heat conduction equation in the last decades, but as far as we know, no one has investigated such a problem from the perspective of developing suitable fractionalorder methods. This has actually motivated us to address this problem by the way of establishing a proper fractional approach that involves employing a combination of a novel fractional difference formula to approximate the Caputo differentiator of order α coupled with the modified three-point fractional formula to approximate the Caputo differentiator of order 2α, where 0 < α ≤ 1. As More >

  • Open Access

    PROCEEDINGS

    A Thermo-Chemo-Mechanically Coupled Peridynamic Model for Investigating the Crack Behaviors of Deformable Solids with Heat Conduction, Species Diffusion, and Chemical Reactions

    Yu Xiang1, Bao Qin2, Zheng Zhong1,*, Zhenjun Jiao1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09088

    Abstract A thermo-chemo-mechanically (TCM) coupled peridynamic (PD) model is proposed to analyze the crack behavior in solids considering heat conduction, species diffusion, and chemical reactions. A PD theoretical framework is established based on non-equilibrium thermodynamics. The influences of species diffusion and chemical reactions on the Helmholtz free energy density and the subsequent formation and propagation of cracks are distinguished by introducing the concentration of diffusive species and the extent of the chemical reaction. Furthermore, inter-physics coupling coefficients are calibrated by equating the corresponding field in the PD model to the continuum mechanics under the same condition. More >

  • Open Access

    PROCEEDINGS

    Multi-Scale Topology Optimization Method Considering Multiple Structural Performances

    Wenjun Chen1, Yingjun Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09095

    Abstract The rapid development of topology optimization has given birth to a large amount of different topology optimization methods, and each of them can manage a class of corresponding engineering problems. However, structures need to meet a variety of requirements in engineering application, such as lightweight and multiple load-bearing performance. To design composite structures that have multiple structural properties, a new multi-scale topology optimization method considering multiple structural performances is proposed in this paper. Based on the fitting functions of the result set and the bisection method, a new method to determine the weight coefficient is… More >

  • Open Access

    ARTICLE

    ANALYTICAL SOLUTION OF THE EXTENDED GRAETZ PROBLEM IN MICROCHANNELS AND MICROTUBES WITH FIXED PRESSURE DROP

    Mohamed Shaimi* , Rabha Khatyr, Jaafar Khalid Naciri

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-14, 2023, DOI:10.5098/hmt.20.23

    Abstract This paper presents an exact analytical solution to the extended Graetz problem in microchannels and microtubes, including axial heat conduction, viscous dissipation, and rarefaction effects for an imposed constant wall temperature. The flow in the microchannel or microtube is assumed to be hydrodynamically fully developed. At the same time, the first-order slip-velocity and temperature jump models represent the wall boundary conditions. The energy equation is solved analytically, and the solution is obtained in terms of Kummer functions with expansion constants directly determined from explicit expressions. The local and fully developed Nusselt numbers are calculated in… More >

  • Open Access

    ARTICLE

    Three Dimensional Coupling between Elastic and Thermal Fields in the Static Analysis of Multilayered Composite Shells

    Salvatore Brischetto*, Roberto Torre, Domenico Cesare

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2551-2594, 2023, DOI:10.32604/cmes.2023.026312

    Abstract This new work aims to develop a full coupled thermomechanical method including both the temperature profile and displacements as primary unknowns of the model. This generic full coupled 3D exact shell model permits the thermal stress investigation of laminated isotropic, composite and sandwich structures. Cylindrical and spherical panels, cylinders and plates are analyzed in orthogonal mixed curved reference coordinates. The 3D equilibrium relations and the 3D Fourier heat conduction equation for spherical shells are coupled and they trivially can be simplified in those for plates and cylindrical panels. The exponential matrix methodology is used to… More >

Displaying 1-10 on page 1 of 108. Per Page