Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (34)
  • Open Access

    ARTICLE

    Impact of Coronary Artery Curvature on the Longitudinal Stent Foreshortening: Real-World Observations

    Yang Li1,#, Runxin Fang2,#, Renyun Wang1, Qiming Dai1, Zhiyong Li2,*, Genshan Ma1

    Molecular & Cellular Biomechanics, Vol.18, No.3, pp. 119-122, 2021, DOI:10.32604/mcb.2021.017503 - 15 July 2021

    Abstract Longitudinal stent foreshortening is a known phenomenon, however, the impact of coronary artery curvature on longitudinal stent foreshortening remains unclear. The aim of this study is to determine the impact of coronary artery curvature on the longitudinal stent foreshortening in the real-world scenarios. A total of 86 consecutive patients underwent coronary stent implantation were included in the present study. The degree of coronary artery curvature was defined as the length of the coronary artery curvature divided by the straight length. Longitudinal stent foreshortening was defined as the stent length after implantation divided by the stent More >

  • Open Access

    ARTICLE

    Stress Distribution in Composites with Co-Phase Periodically Curved Two Neighboring Hollow Fibers

    Resat Kosker1,*, Ismail Gulten2

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 967-983, 2021, DOI:10.32604/cmc.2021.017857 - 04 June 2021

    Abstract In this paper, stress distribution is examined in the case where infinite length co-phase periodically curved two neighboring hollow fibers are contained by an infinite elastic body. The midline of the fibers is assumed to be in the same plane. Using the three-dimensional geometric linear exact equations of the elasticity theory, research is carried out by use of the piecewise homogeneous body model. Moreover, the body is assumed to be loaded at infinity by uniformly distributed normal forces along the hollow fibers. On the inter-medium between the hollow fibers and matrix surfaces, complete cohesion conditions More >

  • Open Access

    ARTICLE

    The Measurement of the Local Slip in Bamboo-Reinforced Concrete Beams Using Moment-Curvature and Bond-Stress

    Muhtar*

    Journal of Renewable Materials, Vol.9, No.9, pp. 1631-1646, 2021, DOI:10.32604/jrm.2021.015452 - 23 April 2021

    Abstract This paper presents a method of measuring local slip in bamboo-reinforced concrete beams. Local slips (so) are calculated by reducing the elongation of the bamboo reinforcement (ebo) with the elongation of the concrete (eco). The elongation of bamboo reinforcement (ebo) is determined in two ways, namely, read directly through a straingauge mounted on the bamboo reinforcement and calculated based on the force analysis or curvature moment as a control. The elongation of the concrete (eco) is calculated using force analysis or curvature moment. The process of calculating curvature moments and bond stress employs the Excel program. The steps… More > Graphic Abstract

    The Measurement of the Local Slip in Bamboo-Reinforced Concrete Beams Using Moment-Curvature and Bond-Stress

  • Open Access

    ARTICLE

    Epithelial Layer Estimation Using Curvatures and Textural Features for Dysplastic Tissue Detection

    Afzan Adam1,*, Abdul Hadi Abd Rahman1, Nor Samsiah Sani1, Zaid Abdi Alkareem Alyessari1, Nur Jumaadzan Zaleha Mamat2, Basela Hasan3

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 761-777, 2021, DOI:10.32604/cmc.2021.014599 - 12 January 2021

    Abstract Boundary effect in digital pathology is a phenomenon where the tissue shapes of biopsy samples get distorted during the sampling process. The morphological pattern of an epithelial layer is greatly affected. Theoretically, the shape deformation model can normalise the distortions, but it needs a 2D image. Curvatures theory, on the other hand, is not yet tested on digital pathology images. Therefore, this work proposed a curvature detection to reduce the boundary effects and estimates the epithelial layer. The boundary effect on the tissue surfaces is normalised using the frequency of a curve deviates from being… More >

  • Open Access

    ABSTRACT

    Differential Organization of Airway Smooth Muscle Cells on Tubular Surface as A Novel Mechanobiology Mechanism of Airway Tissue Morphogenesis

    Linhong Deng1,*, Yang Jin2, Mingzhi Luo1

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 80-80, 2019, DOI:10.32604/mcb.2019.07370

    Abstract Airway smooth muscle cells (ASMCs) exists within the bronchial airway wall in a form of spirally winding bundles [1]. This pattern emerges early during embryonic development and is involved in airway branching [2], providing the airway appropriate contractile capacity and resistance to circumferential tension in health or causing excessive airway narrowing in disease such as asthma. Despite its importance, the cause of ASMCs self-organization remains largely a mystery. Previously, we have demonstrated in 2D that ASMCs can sense the curvature in their microenvironment and change behaviors in differentiation, orientation and migration accordingly [3]. Here we… More >

  • Open Access

    ABSTRACT

    Effect of Protein-Induced Membrane Curvature on the Receptor-Ligand Binding Constant

    Long Li1, Jinglei Hu2, Fan Song1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 54-55, 2019, DOI:10.32604/mcb.2019.07718

    Abstract Cell adhesion is a fundamental biological process involved in many crucial cellular activities such as tissue formation, immune response, and cell locomotion [1, 2]. The adhesion process is mediated by the specific binding of membrane-anchored receptor and ligand proteins, which is quantified by the two-dimensional binding equilibrium constant [3-5]. These adhesion proteins are associated with cell membranes either via transmembrane domains or via GPI anchors, and may very likely generate membrane curvature, which has been shown for a number of membrane proteins to play an important role in organelle shaping, vesicle trafficking, cell fusion and… More >

  • Open Access

    ARTICLE

    Devanagari Handwriting Grading System Based on Curvature Features

    Munish Kumar1, Simpel Rani Jindal2

    CMES-Computer Modeling in Engineering & Sciences, Vol.113, No.2, pp. 195-202, 2017, DOI:10.3970/cmes.2017.113.201

    Abstract Grading of writers in perspective of their handwriting is a challenging task owing to various writing styles of different individuals. This paper presents a framework for grading of Devanagari writers in perspective of their handwriting. This framework of grading can be useful in conducting the handwriting competitions and then deciding the winners on the basis of an automated process. Selecting the set of features is a challenging task for implementing a handwriting grading system of particular language. In this paper, curvature features, namely, parabola curve fitting and power curve fitting have been considered for extracting… More >

  • Open Access

    ARTICLE

    Exact Solutions and Mode Transition for Out-of-Plane Vibrations of Nonuniform Beams with Variable Curvature

    Sen-Yung Lee1, Shueei-Muh Lin2,3, Kai-Ping Chang1

    CMC-Computers, Materials & Continua, Vol.51, No.1, pp. 1-19, 2016, DOI:10.3970/cmc.2016.051.001

    Abstract The two coupled governing differential equations for the out-of-plane vibrations of non-uniform beams with variable curvature are derived via the Hamilton's principle. These equations are expressed in terms of flexural and torsional displacements simultaneously. In this study, the analytical method is proposed. Firstly, two physical parameters are introduced to simplify the analysis. One derives the explicit relations between the flexural and the torsional displacements which can also be used to reduce the difficulty in experimental measurements. Based on the relation, the two governing characteristic differential equations with variable coefficients can be uncoupled into a sixth-order More >

  • Open Access

    ARTICLE

    CONVECTIVE HEAT TRANSFER ANALYSIS IN AN ARCH ENCLOSURE

    Manoj Kr. Triveni*, Dipak Sen, RajSekhar Panua

    Frontiers in Heat and Mass Transfer, Vol.6, pp. 1-6, 2015, DOI:10.5098/hmt.6.2

    Abstract A numerical investigation through laminar natural convection has been executed to illuminate the effect of curvature ratio in an arch enclosure filled with water. The left side wall of the cavity is maintained at a higher temperature than that of the right side wall while the other walls are kept insulated. The governing equations such as continuity, momentum and energy equation are solved by finite volume method. The effect of pertinent parameters such as curvature ratio (1≤ CR ≤ 1.5) and Rayleigh number (1×104 ≤ Ra ≤ 1×106) and) on heat transfer are calculated by commercial More >

  • Open Access

    ARTICLE

    Normal Stresses in an Ifnitite Elastic Body with a Locally Curved and Hollow Nanofiber

    K. S. Alan1

    CMC-Computers, Materials & Continua, Vol.44, No.1, pp. 1-21, 2014, DOI:10.3970/cmc.2014.044.001

    Abstract In the framework of the piecewise homogeneous body model with the use of the three-dimensional geometrically nonlinear exact equations of the theory of elasticity, the method developed for the determination of the stress distribution in the nanocomposites with unidirectional locally curved and hollow nanofibers is used to investigate the normal stresses acting along the nanofibers. Furthermore, it is assumed that the body is loaded at infinity by uniformly distributed normal forces which act along the nanofibers and the crosssection of the nanofibers and normal to its axial line, is a circle of constant radius along More >

Displaying 11-20 on page 2 of 34. Per Page