Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (27)
  • Open Access

    ARTICLE

    Improved Transportation Model with Internet of Things Using Artificial Intelligence Algorithm

    Ayman Khallel Al-Ani1,*, Shams Ul Arfeen Laghari2, Hariprasath Manoharan3, Shitharth Selvarajan4, Mueen Uddin5

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2261-2279, 2023, DOI:10.32604/cmc.2023.038534

    Abstract In this paper, the application of transportation systems in real-time traffic conditions is evaluated with data handling representations. The proposed method is designed in such a way as to detect the number of loads that are present in a vehicle where functionality tasks are computed in the system. Compared to the existing approach, the design model in the proposed method is made by dividing the computing areas into several cluster regions, thereby reducing the complex monitoring system where control errors are minimized. Furthermore, a route management technique is combined with Artificial Intelligence (AI) algorithm to transmit the data to appropriate… More >

  • Open Access

    PROCEEDINGS

    A Data-Driven Model for Real-Time Simulation of the Contact Detumbling of Satellites

    Hao Chen1, Honghua Dai1, Xiaokui Yue1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09145

    Abstract The number of malfunctioning satellites is dramatically increasing with the development of space technology in recent decades. These malfunctioning satellites are normally in rotating or tumbling states due to residual angular momentum, gravity gradient, et al, making direct capture impossible. Therefore, stabilizing these objects within acceptable angular velocities is an indispensable stage for in-orbit capture. The contact method using a flexible device (e.g., brush or rod) to detumble these satellites is considered to be safe and efficient enough. However, it is extremely time-consuming to solve the dynamic model of the detumbling system, which is a very tricky problem for in-orbit… More >

  • Open Access

    PROCEEDINGS

    Data-Driven Enhanced Combined Finite-Discrete Element Method for Simulating Rock Failure Progress

    Ruifeng Zhao1, Zhijun Wu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.1, pp. 1-2, 2023, DOI:10.32604/icces.2023.09814

    Abstract The combined finite-discrete element method (FDEM) can effectively simulate the continuousdiscontinuous failure process of rocks, and is now widely adopted to investigate the issues related to rock mechanics and engineering. The conventional FDEM requires pre-defines constitutive models to calculate the element stress from element deformations [1]. However, the constitutive model used in conventional FDEM is obtained by empirical fitting of rock mechanics test data, and large amount of rock physical and mechanical information present in the test data, such as the nonlinear properties of rock presented in the initial compaction stage, are lost in the process of fitting test data… More >

  • Open Access

    ARTICLE

    Intelligent Intrusion Detection System for the Internet of Medical Things Based on Data-Driven Techniques

    Okba Taouali1,*, Sawcen Bacha2, Khaoula Ben Abdellafou1, Ahamed Aljuhani1, Kamel Zidi3, Rehab Alanazi1, Mohamed Faouzi Harkat4

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1593-1609, 2023, DOI:10.32604/csse.2023.039984

    Abstract Introducing IoT devices to healthcare fields has made it possible to remotely monitor patients’ information and provide a proper diagnosis as needed, resulting in the Internet of Medical Things (IoMT). However, obtaining good security features that ensure the integrity and confidentiality of patient’s information is a significant challenge. However, due to the computational resources being limited, an edge device may struggle to handle heavy detection tasks such as complex machine learning algorithms. Therefore, designing and developing a lightweight detection mechanism is crucial. To address the aforementioned challenges, a new lightweight IDS approach is developed to effectively combat a diverse range… More >

  • Open Access

    ARTICLE

    A Data Driven Security Correction Method for Power Systems with UPFC

    Qun Li, Ningyu Zhang*, Jianhua Zhou, Xinyao Zhu, Peng Li

    Energy Engineering, Vol.120, No.6, pp. 1485-1502, 2023, DOI:10.32604/ee.2023.022856

    Abstract The access of unified power flow controllers (UPFC) has changed the structure and operation mode of power grids all across the world, and it has brought severe challenges to the traditional real-time calculation of security correction based on traditional models. Considering the limitation of computational efficiency regarding complex, physical models, a data-driven power system security correction method with UPFC is, in this paper, proposed. Based on the complex mapping relationship between the operation state data and the security correction strategy, a two-stage deep neural network (DNN) learning framework is proposed, which divides the offline training task of security correction into… More >

  • Open Access

    ARTICLE

    Data-Driven Probabilistic System for Batsman Performance Prediction in a Cricket Match

    Fawad Nasim1,2,*, Muhammad Adnan Yousaf1, Sohail Masood1,2, Arfan Jaffar1,2, Muhammad Rashid3

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2865-2877, 2023, DOI:10.32604/iasc.2023.034258

    Abstract Batsmen are the backbone of any cricket team and their selection is very critical to the team’s success. A good batsman not only scores run but also provides stability to the team’s innings. The most important factor in selecting a batsman is their ability to score runs. It is a generally accepted notion that the future performance of a batsman can be predicted by observing and analyzing their past record. This hypothesis is based on the fact that a player’s batting average is generally considered to be a good indicator of their future performance. We proposed a data-driven probabilistic system… More >

  • Open Access

    ARTICLE

    Wind Turbine Spindle Operating State Recognition and Early Warning Driven by SCADA Data

    Yuhan Liu, Yuqiao Zheng*, Zhuang Ma, Cang Wu

    Energy Engineering, Vol.120, No.5, pp. 1223-1237, 2023, DOI:10.32604/ee.2023.026329

    Abstract An operating condition recognition approach of wind turbine spindle is proposed based on supervisory control and data acquisition (SCADA) normal data drive. Firstly, the SCADA raw data of wind turbine under full working conditions are cleaned and feature extracted. Then the spindle speed is employed as the output parameter, and the single and combined normal behavior model of the wind turbine spindle is constructed sequentially with the pre-processed data, with the evaluation indexes selected as the optimal model. Finally, calculating the spindle operation status index according to the sliding window principle, ascertaining the threshold value for identifying the abnormal spindle… More >

  • Open Access

    ARTICLE

    Data-Driven Approach for Condition Monitoring and Improving Power Output of Photovoltaic Systems

    Nebras M. Sobahi1,*, Ahteshamul Haque2, V S Bharath Kurukuru2, Md. Mottahir Alam1, Asif Irshad Khan3

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5757-5776, 2023, DOI:10.32604/cmc.2022.028340

    Abstract Increasing renewable energy targets globally has raised the requirement for the efficient and profitable operation of solar photovoltaic (PV) systems. In light of this requirement, this paper provides a path for evaluating the operating condition and improving the power output of the PV system in a grid integrated environment. To achieve this, different types of faults in grid-connected PV systems (GCPVs) and their impact on the energy loss associated with the electrical network are analyzed. A data-driven approach using neural networks (NNs) is proposed to achieve root cause analysis and localize the fault to the component level in the system.… More >

  • Open Access

    ARTICLE

    An Edge-Fog-Cloud Computing-Based Digital Twin Model for Prognostics Health Management of Process Manufacturing Systems

    Jie Ren1,2, Chuqiao Xu3, Junliang Wang2,4, Jie Zhang2,*, Xinhua Mao4, Wei Shen4

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.1, pp. 599-618, 2023, DOI:10.32604/cmes.2022.022415

    Abstract The prognostics health management (PHM) from the systematic view is critical to the healthy continuous operation of process manufacturing systems (PMS), with different kinds of dynamic interference events. This paper proposes a three leveled digital twin model for the systematic PHM of PMSs. The unit-leveled digital twin model of each basic device unit of PMSs is constructed based on edge computing, which can provide real-time monitoring and analysis of the device status. The station-leveled digital twin models in the PMSs are designed to optimize and control the process parameters, which are deployed for the manufacturing execution on the fog server.… More >

  • Open Access

    ARTICLE

    Data-Driven Models for Predicting Solar Radiation in Semi-Arid Regions

    Mehdi Jamei1, Nadjem Bailek2,*, Kada Bouchouicha3, Muhammed A. Hassan4, Ahmed Elbeltagi5, Alban Kuriqi6, Nadhir Al-Ansar7, Javier Almorox8, El-Sayed M. El-kenawy9,10

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1625-1640, 2023, DOI:10.32604/cmc.2023.031406

    Abstract Solar energy represents one of the most important renewable energy sources contributing to the energy transition process. Considering that the observation of daily global solar radiation (GSR) is not affordable in some parts of the globe, there is an imperative need to develop alternative ways to predict it. Therefore, the main objective of this study is to evaluate the performance of different hybrid data-driven techniques in predicting daily GSR in semi-arid regions, such as the majority of Spanish territory. Here, four ensemble-based hybrid models were developed by hybridizing Additive Regression (AR) with Random Forest (RF), Locally Weighted Linear Regression (LWLR),… More >

Displaying 1-10 on page 1 of 27. Per Page