Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (174)
  • Open Access

    PROCEEDINGS

    Solving Advection-Diffusion Equation by Proper Generalized Decomposition with Coordinate Transformation

    Xinyi Guan1, Shaoqiang Tang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.010869

    Abstract Inheriting a convergence difficulty explained by the Kolmogorov N-width [1], the advection-diffusion equation is not effectively solved by the Proper Generalized Decomposition [2] (PGD) method. In this paper, we propose a new strategy: Proper Generalized Decomposition with Coordinate Transformation (CT-PGD). Converting the mixed hyperbolic-parabolic equation to a parabolic one, it resumes the efficiency of convergence for advection-dominant problems. Combining PGD with CT-PGD, we solve advection-diffusion equation by much fewer degrees of freedom, hence improve the efficiency. The advection-dominant regime and diffusion-dominant regime are quantitatively classified by a threshold, computed numerically. Moreover, we find that appropriate More >

  • Open Access

    ARTICLE

    Reliable iterative techniques for solving the KS equation arising in fluid flow

    Munirah Alotaibi1, Doaa Rizk2, Amal Al−Hanaya1, Ahmed Hagag3

    Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, Vol.40, No.1, pp. 1-9, 2024, DOI:10.23967/j.rimni.2024.02.003 - 23 February 2024

    Abstract In this study, we examine the Kuramoto-Sivashinsky equation which is a nonlinear model that describes several physical and chemical events arising in fluid flow. The approximate analytical solution for the fractional KS (FKS) problem is calculated using the Temimi-Ansari method (TAM) and the natural decomposition method (NDM). The projected procedure (NDM) combines the adomian decomposition method with the natural transform. Each technique can deal with nonlinear terms without making any assumptions. The methodologies under consideration provide ωn-curves that display the convergence window of the power series solution that approaches the exact solution. We explore two distinct More >

  • Open Access

    ARTICLE

    A Microseismic Signal Denoising Algorithm Combining VMD and Wavelet Threshold Denoising Optimized by BWOA

    Dijun Rao1,2,3,4, Min Huang1,2,3,5, Xiuzhi Shi4, Zhi Yu6,*, Zhengxiang He7

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 187-217, 2024, DOI:10.32604/cmes.2024.051402 - 20 August 2024

    Abstract The denoising of microseismic signals is a prerequisite for subsequent analysis and research. In this research, a new microseismic signal denoising algorithm called the Black Widow Optimization Algorithm (BWOA) optimized Variational Mode Decomposition (VMD) joint Wavelet Threshold Denoising (WTD) algorithm (BVW) is proposed. The BVW algorithm integrates VMD and WTD, both of which are optimized by BWOA. Specifically, this algorithm utilizes VMD to decompose the microseismic signal to be denoised into several Band-Limited Intrinsic Mode Functions (BLIMFs). Subsequently, these BLIMFs whose correlation coefficients with the microseismic signal to be denoised are higher than a threshold… More >

  • Open Access

    ARTICLE

    SMSTracker: A Self-Calibration Multi-Head Self-Attention Transformer for Visual Object Tracking

    Zhongyang Wang, Hu Zhu, Feng Liu*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 605-623, 2024, DOI:10.32604/cmc.2024.050959 - 18 July 2024

    Abstract Visual object tracking plays a crucial role in computer vision. In recent years, researchers have proposed various methods to achieve high-performance object tracking. Among these, methods based on Transformers have become a research hotspot due to their ability to globally model and contextualize information. However, current Transformer-based object tracking methods still face challenges such as low tracking accuracy and the presence of redundant feature information. In this paper, we introduce self-calibration multi-head self-attention Transformer (SMSTracker) as a solution to these challenges. It employs a hybrid tensor decomposition self-organizing multi-head self-attention transformer mechanism, which not only… More >

  • Open Access

    ARTICLE

    Bearing Fault Diagnosis Based on Optimized Feature Mode Decomposition and Improved Deep Belief Network

    Guangfei Jia*, Yanchao Meng, Zhiying Qin

    Structural Durability & Health Monitoring, Vol.18, No.4, pp. 445-463, 2024, DOI:10.32604/sdhm.2024.049298 - 05 June 2024

    Abstract The vibration signals of rolling bearings exhibit nonlinear and non-stationary characteristics under the influence of noise. In intelligent fault diagnosis, unprocessed signals will lead to weak fault characteristics and low diagnostic accuracy. To solve the above problem, a fault diagnosis method based on parameter optimization feature mode decomposition and improved deep belief networks is proposed. The feature mode decomposition is used to decompose the vibration signals. The parameter adaptation of feature mode decomposition is implemented by improved whale optimization algorithm including Levy flight strategy and adaptive weight. The selection of activation function and parameters is More > Graphic Abstract

    Bearing Fault Diagnosis Based on Optimized Feature Mode Decomposition and Improved Deep Belief Network

  • Open Access

    ARTICLE

    Improved Unit Commitment with Accurate Dynamic Scenarios Clustering Based on Multi-Parametric Programming and Benders Decomposition

    Zhang Zhi1, Haiyu Huang2, Wei Xiong2, Yijia Zhou3, Mingyu Yan3,*, Shaolian Xia2, Baofeng Jiang2, Renbin Su2, Xichen Tian4

    Energy Engineering, Vol.121, No.6, pp. 1557-1576, 2024, DOI:10.32604/ee.2024.047401 - 21 May 2024

    Abstract Stochastic unit commitment is one of the most powerful methods to address uncertainty. However, the existing scenario clustering technique for stochastic unit commitment cannot accurately select representative scenarios, which threatens the robustness of stochastic unit commitment and hinders its application. This paper provides a stochastic unit commitment with dynamic scenario clustering based on multi-parametric programming and Benders decomposition. The stochastic unit commitment is solved via the Benders decomposition, which decouples the primal problem into the master problem and two types of subproblems. In the master problem, the committed generator is determined, while the feasibility and… More >

  • Open Access

    ARTICLE

    Positron Emission Tomography Lung Image Respiratory Motion Correcting with Equivariant Transformer

    Jianfeng He1,2, Haowei Ye1, Jie Ning1, Hui Zhou1,2,*, Bo She3,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3355-3372, 2024, DOI:10.32604/cmc.2024.048706 - 15 May 2024

    Abstract In addressing the challenge of motion artifacts in Positron Emission Tomography (PET) lung scans, our study introduces the Triple Equivariant Motion Transformer (TEMT), an innovative, unsupervised, deep-learning-based framework for efficient respiratory motion correction in PET imaging. Unlike traditional techniques, which segment PET data into bins throughout a respiratory cycle and often face issues such as inefficiency and overemphasis on certain artifacts, TEMT employs Convolutional Neural Networks (CNNs) for effective feature extraction and motion decomposition.TEMT’s unique approach involves transforming motion sequences into Lie group domains to highlight fundamental motion patterns, coupled with employing competitive weighting for More >

  • Open Access

    ARTICLE

    A Wind Power Prediction Framework for Distributed Power Grids

    Bin Chen1, Ziyang Li1, Shipeng Li1, Qingzhou Zhao1, Xingdou Liu2,*

    Energy Engineering, Vol.121, No.5, pp. 1291-1307, 2024, DOI:10.32604/ee.2024.046374 - 30 April 2024

    Abstract To reduce carbon emissions, clean energy is being integrated into the power system. Wind power is connected to the grid in a distributed form, but its high variability poses a challenge to grid stability. This article combines wind turbine monitoring data with numerical weather prediction (NWP) data to create a suitable wind power prediction framework for distributed grids. First, high-precision NWP of the turbine range is achieved using weather research and forecasting models (WRF), and Kriging interpolation locates predicted meteorological data at the turbine site. Then, a preliminary predicted power series is obtained based on More >

  • Open Access

    ARTICLE

    An Enhanced Ensemble-Based Long Short-Term Memory Approach for Traffic Volume Prediction

    Duy Quang Tran1, Huy Q. Tran2,*, Minh Van Nguyen3

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3585-3602, 2024, DOI:10.32604/cmc.2024.047760 - 26 March 2024

    Abstract With the advancement of artificial intelligence, traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality. Traffic volume is an influential parameter for planning and operating traffic structures. This study proposed an improved ensemble-based deep learning method to solve traffic volume prediction problems. A set of optimal hyperparameters is also applied for the suggested approach to improve the performance of the learning process. The fusion of these methodologies aims to harness ensemble empirical mode decomposition’s capacity to discern complex traffic patterns and long short-term memory’s proficiency in learning temporal… More >

  • Open Access

    ARTICLE

    DeepSVDNet: A Deep Learning-Based Approach for Detecting and Classifying Vision-Threatening Diabetic Retinopathy in Retinal Fundus Images

    Anas Bilal1, Azhar Imran2, Talha Imtiaz Baig3,4, Xiaowen Liu1,*, Haixia Long1, Abdulkareem Alzahrani5, Muhammad Shafiq6

    Computer Systems Science and Engineering, Vol.48, No.2, pp. 511-528, 2024, DOI:10.32604/csse.2023.039672 - 19 March 2024

    Abstract Artificial Intelligence (AI) is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy (VTDR), which is a leading cause of visual impairment and blindness worldwide. However, previous automated VTDR detection methods have mainly relied on manual feature extraction and classification, leading to errors. This paper proposes a novel VTDR detection and classification model that combines different models through majority voting. Our proposed methodology involves preprocessing, data augmentation, feature extraction, and classification stages. We use a hybrid convolutional neural network-singular value decomposition (CNN-SVD) model for feature extraction and selection and an improved SVM-RBF with a Decision Tree More >

Displaying 1-10 on page 1 of 174. Per Page