Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    ELDE-Net: Efficient Light-Weight Depth Estimation Network for Deep Reinforcement Learning-Based Mobile Robot Path Planning

    Thai-Viet Dang1,*, Dinh-Manh-Cuong Tran1, Nhu-Nghia Bui1, Phan Xuan Tan2,*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 2651-2680, 2025, DOI:10.32604/cmc.2025.067500 - 23 September 2025

    Abstract Precise and robust three-dimensional object detection (3DOD) presents a promising opportunity in the field of mobile robot (MR) navigation. Monocular 3DOD techniques typically involve extending existing two-dimensional object detection (2DOD) frameworks to predict the three-dimensional bounding box (3DBB) of objects captured in 2D RGB images. However, these methods often require multiple images, making them less feasible for various real-time scenarios. To address these challenges, the emergence of agile convolutional neural networks (CNNs) capable of inferring depth from a single image opens a new avenue for investigation. The paper proposes a novel ELDE-Net network designed to… More >

  • Open Access

    ARTICLE

    Unsupervised Monocular Depth Estimation with Edge Enhancement for Dynamic Scenes

    Peicheng Shi1,*, Yueyue Tang1, Yi Li1, Xinlong Dong1, Yu Sun2, Aixi Yang3

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3321-3343, 2025, DOI:10.32604/cmc.2025.065297 - 03 July 2025

    Abstract In the dynamic scene of autonomous vehicles, the depth estimation of monocular cameras often faces the problem of inaccurate edge depth estimation. To solve this problem, we propose an unsupervised monocular depth estimation model based on edge enhancement, which is specifically aimed at the depth perception challenge in dynamic scenes. The model consists of two core networks: a deep prediction network and a motion estimation network, both of which adopt an encoder-decoder architecture. The depth prediction network is based on the U-Net structure of ResNet18, which is responsible for generating the depth map of the… More >

  • Open Access

    REVIEW

    Bridging 2D and 3D Object Detection: Advances in Occlusion Handling through Depth Estimation

    Zainab Ouardirhi1,2,*, Mostapha Zbakh2, Sidi Ahmed Mahmoudi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 2509-2571, 2025, DOI:10.32604/cmes.2025.064283 - 30 June 2025

    Abstract Object detection in occluded environments remains a core challenge in computer vision (CV), especially in domains such as autonomous driving and robotics. While Convolutional Neural Network (CNN)-based two-dimensional (2D) and three-dimensional (3D) object detection methods have made significant progress, they often fall short under severe occlusion due to depth ambiguities in 2D imagery and the high cost and deployment limitations of 3D sensors such as Light Detection and Ranging (LiDAR). This paper presents a comparative review of recent 2D and 3D detection models, focusing on their occlusion-handling capabilities and the impact of sensor modalities such More >

  • Open Access

    ARTICLE

    Self-Supervised Monocular Depth Estimation with Scene Dynamic Pose

    Jing He1, Haonan Zhu2, Chenhao Zhao1, Minrui Zhao3,*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4551-4573, 2025, DOI:10.32604/cmc.2025.062437 - 19 May 2025

    Abstract Self-supervised monocular depth estimation has emerged as a major research focus in recent years, primarily due to the elimination of ground-truth depth dependence. However, the prevailing architectures in this domain suffer from inherent limitations: existing pose network branches infer camera ego-motion exclusively under static-scene and Lambertian-surface assumptions. These assumptions are often violated in real-world scenarios due to dynamic objects, non-Lambertian reflectance, and unstructured background elements, leading to pervasive artifacts such as depth discontinuities (“holes”), structural collapse, and ambiguous reconstruction. To address these challenges, we propose a novel framework that integrates scene dynamic pose estimation into… More >

  • Open Access

    ARTICLE

    Perpendicular-Cutdepth: Perpendicular Direction Depth Cutting Data Augmentation Method

    Le Zou1, Linsong Hu1, Yifan Wang1, Zhize Wu2, Xiaofeng Wang1,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 927-941, 2024, DOI:10.32604/cmc.2024.048889 - 25 April 2024

    Abstract Depth estimation is an important task in computer vision. Collecting data at scale for monocular depth estimation is challenging, as this task requires simultaneously capturing RGB images and depth information. Therefore, data augmentation is crucial for this task. Existing data augmentation methods often employ pixel-wise transformations, which may inadvertently disrupt edge features. In this paper, we propose a data augmentation method for monocular depth estimation, which we refer to as the Perpendicular-Cutdepth method. This method involves cutting real-world depth maps along perpendicular directions and pasting them onto input images, thereby diversifying the data without compromising… More >

  • Open Access

    ARTICLE

    Enhanced 3D Point Cloud Reconstruction for Light Field Microscopy Using U-Net-Based Convolutional Neural Networks

    Shariar Md Imtiaz1, Ki-Chul Kwon1, F. M. Fahmid Hossain1, Md. Biddut Hossain1, Rupali Kiran Shinde1, Sang-Keun Gil2, Nam Kim1,*

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2921-2937, 2023, DOI:10.32604/csse.2023.040205 - 09 November 2023

    Abstract This article describes a novel approach for enhancing the three-dimensional (3D) point cloud reconstruction for light field microscopy (LFM) using U-net architecture-based fully convolutional neural network (CNN). Since the directional view of the LFM is limited, noise and artifacts make it difficult to reconstruct the exact shape of 3D point clouds. The existing methods suffer from these problems due to the self-occlusion of the model. This manuscript proposes a deep fusion learning (DL) method that combines a 3D CNN with a U-Net-based model as a feature extractor. The sub-aperture images obtained from the light field… More >

  • Open Access

    ARTICLE

    Monocular Depth Estimation with Sharp Boundary

    Xin Yang1,2, Qingling Chang1,2, Shiting Xu3, Xinlin Liu1,2, Yan Cui1,2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 573-592, 2023, DOI:10.32604/cmes.2023.023424 - 05 January 2023

    Abstract Monocular depth estimation is the basic task in computer vision. Its accuracy has tremendous improvement in the decade with the development of deep learning. However, the blurry boundary in the depth map is a serious problem. Researchers find that the blurry boundary is mainly caused by two factors. First, the low-level features, containing boundary and structure information, may be lost in deep networks during the convolution process. Second, the model ignores the errors introduced by the boundary area due to the few portions of the boundary area in the whole area, during the backpropagation. Focusing More >

Displaying 1-10 on page 1 of 7. Per Page