Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    ARTICLE

    Real-Time Dynamic Multiobjective Path Planning: A Case Study

    Hongle Li1, SeongKi Kim2,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5571-5594, 2025, DOI:10.32604/cmc.2025.067424 - 23 October 2025

    Abstract Path planning is a fundamental component in robotics and game artificial intelligence that considerably influences the motion efficiency of robots and unmanned aerial vehicles, as well as the realism and immersion of virtual environments. However, traditional algorithms are often limited to single-objective optimization and lack real-time adaptability to dynamic environments. This study addresses these limitations through a proposed real-time dynamic multiobjective (RDMO) path-planning algorithm based on an enhanced A* framework. The proposed algorithm employs a queue-based structure and composite multiheuristic functions to dynamically manage game tasks and compute optimal paths under changing-map-connectivity conditions in real… More >

  • Open Access

    ARTICLE

    Research on Adaptive Reward Optimization Method for Robot Navigation in Complex Dynamic Environment

    Jie He, Dongmei Zhao, Tao Liu*, Qingfeng Zou, Jian’an Xie

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2733-2749, 2025, DOI:10.32604/cmc.2025.065205 - 03 July 2025

    Abstract Robot navigation in complex crowd service scenarios, such as medical logistics and commercial guidance, requires a dynamic balance between safety and efficiency, while the traditional fixed reward mechanism lacks environmental adaptability and struggles to adapt to the variability of crowd density and pedestrian motion patterns. This paper proposes a navigation method that integrates spatiotemporal risk field modeling and adaptive reward optimization, aiming to improve the robot’s decision-making ability in diverse crowd scenarios through dynamic risk assessment and nonlinear weight adjustment. We construct a spatiotemporal risk field model based on a Gaussian kernel function by combining… More >

  • Open Access

    ARTICLE

    Environmental and Economic Optimization of Multi-Source Power Real-Time Dispatch Based on DGADE-HDJ

    Bin Jiang1, Houbin Wang2,*

    Energy Engineering, Vol.122, No.5, pp. 2001-2057, 2025, DOI:10.32604/ee.2025.062765 - 25 April 2025

    Abstract Considering the special features of dynamic environment economic dispatch of power systems with high dimensionality, strong coupling, nonlinearity, and non-convexity, a GA-DE multi-objective optimization algorithm based on dual-population pseudo-parallel genetic algorithm-differential evolution is proposed in this paper. The algorithm is based on external elite archive and Pareto dominance, and it adopts the cooperative co-evolution mechanism of differential evolution and genetic algorithm. Average entropy and cubic chaotic mapping initialization strategies are proposed to increase population diversity. In the proposed method, we analyze the distribution of neighboring solutions and apply a new Pareto solution set pruning approach.… More >

  • Open Access

    ARTICLE

    MG-SLAM: RGB-D SLAM Based on Semantic Segmentation for Dynamic Environment in the Internet of Vehicles

    Fengju Zhang1, Kai Zhu2,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2353-2372, 2025, DOI:10.32604/cmc.2024.058944 - 17 February 2025

    Abstract The Internet of Vehicles (IoV) has become an important direction in the field of intelligent transportation, in which vehicle positioning is a crucial part. SLAM (Simultaneous Localization and Mapping) technology plays a crucial role in vehicle localization and navigation. Traditional Simultaneous Localization and Mapping (SLAM) systems are designed for use in static environments, and they can result in poor performance in terms of accuracy and robustness when used in dynamic environments where objects are in constant movement. To address this issue, a new real-time visual SLAM system called MG-SLAM has been developed. Based on ORB-SLAM2,… More >

  • Open Access

    REVIEW

    A Comprehensive Review of Next-Gen UAV Swarm Robotics: Optimisation Techniques and Control Strategies for Dynamic Environments

    Ghulam E Mustafa Abro1,*, Ayman M Abdallah1,2, Faizan Zahid3, Saleem Ahmed4

    Intelligent Automation & Soft Computing, Vol.40, pp. 99-123, 2025, DOI:10.32604/iasc.2025.060364 - 23 January 2025

    Abstract This review synthesises and assesses the most recent developments in Unmanned Aerial Vehicles (UAVs) and swarm robotics, with a specific emphasis on optimisation strategies, path planning, and formation control. The study identifies key methodologies that are driving progress in the field by conducting a comprehensive analysis of seven critical publications. The following are included: sensor-based platforms that facilitate effective obstacle avoidance, cluster-based hierarchical path planning for efficient navigation, and adaptive hybrid controllers for dynamic environments. The review emphasises the substantial contribution of optimisation techniques, including Max-Min Ant Colony Optimisation (MMACO), to the improvement of convergence… More >

  • Open Access

    ARTICLE

    Obstacle Avoidance Capability for Multi-Target Path Planning in Different Styles of Search

    Mustafa Mohammed Alhassow1,*, Oguz Ata2, Dogu Cagdas Atilla1

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 749-771, 2024, DOI:10.32604/cmc.2024.055592 - 15 October 2024

    Abstract This study investigates robot path planning for multiple agents, focusing on the critical requirement that agents can pursue concurrent pathways without collisions. Each agent is assigned a task within the environment to reach a designated destination. When the map or goal changes unexpectedly, particularly in dynamic and unknown environments, it can lead to potential failures or performance degradation in various ways. Additionally, priority inheritance plays a significant role in path planning and can impact performance. This study proposes a Conflict-Based Search (CBS) approach, introducing a unique hierarchical search mechanism for planning paths for multiple robots.… More >

  • Open Access

    ARTICLE

    RO-SLAM: A Robust SLAM for Unmanned Aerial Vehicles in a Dynamic Environment

    Jingtong Peng*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2275-2291, 2023, DOI:10.32604/csse.2023.039272 - 28 July 2023

    Abstract When applied to Unmanned Aerial Vehicles (UAVs), existing Simultaneous Localization and Mapping (SLAM) algorithms are constrained by several factors, notably the interference of dynamic outdoor objects, the limited computing performance of UAVs, and the holes caused by dynamic objects removal in the map. We proposed a new SLAM system for UAVs in dynamic environments to solve these problems based on ORB-SLAM2. We have improved the Pyramid Scene Parsing Network (PSPNet) using Depthwise Separable Convolution to reduce the model parameters. We also incorporated an auxiliary loss function to supervise the hidden layer to enhance accuracy. Then… More >

  • Open Access

    ARTICLE

    Multi-Agent Dynamic Area Coverage Based on Reinforcement Learning with Connected Agents

    Fatih Aydemir1, Aydin Cetin2,*

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 215-230, 2023, DOI:10.32604/csse.2023.031116 - 16 August 2022

    Abstract Dynamic area coverage with small unmanned aerial vehicle (UAV) systems is one of the major research topics due to limited payloads and the difficulty of decentralized decision-making process. Collaborative behavior of a group of UAVs in an unknown environment is another hard problem to be solved. In this paper, we propose a method for decentralized execution of multi-UAVs for dynamic area coverage problems. The proposed decentralized decision-making dynamic area coverage (DDMDAC) method utilizes reinforcement learning (RL) where each UAV is represented by an intelligent agent that learns policies to create collaborative behaviors in partially observable… More >

  • Open Access

    ARTICLE

    Strategy for Creating AR Applications in Static and Dynamic Environments Using SLAM- and Marker Detector-Based Tracking

    Chanho Park1,2, Hyunwoo Cho1, Sangheon Park1, Sung-Uk Jung1, Suwon Lee3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 529-549, 2022, DOI:10.32604/cmes.2022.019214 - 24 January 2022

    Abstract Recently, simultaneous localization and mapping (SLAM) has received considerable attention in augmented reality (AR) libraries and applications. Although the assumption of scene rigidity is common in most visual SLAMs, this assumption limits the possibilities of AR applications in various real-world environments. In this paper, we propose a new tracking system that integrates SLAM with a marker detection module for real-time AR applications in static and dynamic environments. Because the proposed system assumes that the marker is movable, SLAM performs tracking and mapping of the static scene except for the marker, and the marker detector estimates… More >

  • Open Access

    ARTICLE

    Path Planning of Quadrotors in a Dynamic Environment Using a Multicriteria Multi-Verse Optimizer

    Raja Jarray1, Mujahed Al-Dhaifallah2,*, Hegazy Rezk3,4, Soufiene Bouallègue1,5

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 2159-2180, 2021, DOI:10.32604/cmc.2021.018752 - 21 July 2021

    Abstract Paths planning of Unmanned Aerial Vehicles (UAVs) in a dynamic environment is considered a challenging task in autonomous flight control design. In this work, an efficient method based on a Multi-Objective Multi-Verse Optimization (MOMVO) algorithm is proposed and successfully applied to solve the path planning problem of quadrotors with moving obstacles. Such a path planning task is formulated as a multicriteria optimization problem under operational constraints. The proposed MOMVO-based planning approach aims to lead the drone to traverse the shortest path from the starting point and the target without collision with moving obstacles. The vehicle… More >

Displaying 1-10 on page 1 of 13. Per Page