Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access


    Towards Robust Rain Removal with Unet++

    Boxia Hu1,2,*, Yaqi Sun3, Yufei Yang1,4, Ze Ouyang3, Feng Zhang3

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 879-890, 2023, DOI:10.32604/cmc.2023.035858

    Abstract Image deraining has become a hot topic in the field of computer vision. It is the process of removing rain streaks from an image to reconstruct a high-quality background. This study aims at improving the performance of image rain streak removal and reducing the disruptive effects caused by rain. To better fit the rain removal task, an innovative image deraining method is proposed, where a kernel prediction network with Unet++ is designed and used to filter rainy images, and rainy-day images are used to estimate the pixel-level kernel for rain removal. To minimize the gap More >

  • Open Access


    UAV-Aided Data Acquisition Using Gaining-Sharing Knowledge Optimization Algorithm

    Rania M Tawfik1, Hazem A. A. Nomer2, M. Saeed Darweesh1,*, Ali Wagdy Mohamed3,4, Hassan Mostafa5,6

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5999-6013, 2022, DOI:10.32604/cmc.2022.028234

    Abstract Unmanned Aerial Vehicles (UAVs) provide a reliable and energy-efficient solution for data collection from the Narrowband Internet of Things (NB-IoT) devices. However, the UAV’s deployment optimization, including locations of the UAV’s stop points, is a necessity to minimize the energy consumption of the UAV and the NB-IoT devices and also to conduct the data collection efficiently. In this regard, this paper proposes Gaining-Sharing Knowledge (GSK) algorithm for optimizing the UAV’s deployment. In GSK, the number of UAV’s stop points in the three-dimensional space is encapsulated into a single individual with a fixed length representing an More >

  • Open Access


    A Reversible Data Hiding Algorithm Based on Image Camouflage and Bit-Plane Compression

    Jianyi Liu1, Ru Zhang1,*, Jing Li2, Lei Guan3, Cheng Jie2, Jiaping Gui4

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 2633-2649, 2021, DOI:10.32604/cmc.2021.016605

    Abstract Reversible data hiding in encrypted image (RDHEI) is a widely used technique for privacy protection, which has been developed in many applications that require high confidentiality, authentication and integrity. Proposed RDHEI methods do not allow high embedding rate while ensuring losslessly recover the original image. Moreover, the ciphertext form of encrypted image in RDHEI framework is easy to cause the attention of attackers. This paper proposes a reversible data hiding algorithm based on image camouflage encryption and bit plane compression. A camouflage encryption algorithm is used to transform a secret image into another meaningful target More >

  • Open Access


    Human Face Sketch to RGB Image with Edge Optimization and Generative Adversarial Networks

    Feng Zhang1, Huihuang Zhao1,2,*, Wang Ying1,2, Qingyun Liu1,2, Alex Noel Joseph Raj3, Bin Fu4

    Intelligent Automation & Soft Computing, Vol.26, No.6, pp. 1391-1401, 2020, DOI:10.32604/iasc.2020.011750

    Abstract Generating an RGB image from a sketch is a challenging and interesting topic. This paper proposes a method to transform a face sketch into a color image based on generation confrontation network and edge optimization. A neural network model based on Generative Adversarial Networks for transferring sketch to RGB image is designed. The face sketch and its RGB image is taken as the training data set. The human face sketch is transformed into an RGB image by the training method of generative adversarial networks confrontation. Aiming to generate a better result especially in edge, an More >

Displaying 1-10 on page 1 of 4. Per Page