Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    TRANSIENT RAYLEIGH-BÉNARD-MARANGONI CONVECTION ENHANCED GAS-LIQUID SOLUTE TRANSFER IN THIN LAYERS

    Muthasim Fahmy, Zhifa Sun

    Frontiers in Heat and Mass Transfer, Vol.2, No.4, pp. 1-14, 2011, DOI:10.5098/hmt.v2.4.3003

    Abstract A gas-liquid solute transfer process initiated in a closed vessel can exhibit Rayleigh-Bénard-Marangoni (RBM) convection enhanced mass transfer. For short exposure times experimental and theoretical results demonstrate that for deep liquid systems prior to solute penetration across the depth of the fluid, the stability thresholds of the system decreases with time. For thin liquid layers at longer exposure times the mass transfer enhancement under RBM convection can be affected in two ways: (1) solute penetration to the bottom liquid-solid boundary causing a departure from a penetration type concentration profile; (2) solute penetration to the top gas-solid boundary in the gas… More >

  • Open Access

    ARTICLE

    Design of Six Element MIMO Antenna with Enhanced Gain for 28/38 GHz mm-Wave 5G Wireless Application

    K. Jayanthi1,*, A. M. Kalpana2

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1689-1705, 2023, DOI:10.32604/csse.2023.034613

    Abstract The fifth-generation (5G) wireless technology is the most recent standardization in communication services of interest across the globe. The concept of Multiple-Input-Multiple-Output antenna (MIMO) systems has recently been incorporated to operate at higher frequencies without limitations. This paper addresses, design of a high-gain MIMO antenna that offers a bandwidth of 400 MHz and 2.58 GHz by resonating at 28 and 38 GHz, respectively for 5G millimeter (mm)-wave applications. The proposed design is developed on a RT Duroid 5880 substrate with a single elemental dimension of 9.53 × 7.85 × 0.8 mm3. The patch antenna is fully grounded and is fed with a 50-ohm stepped impedance… More >

  • Open Access

    ARTICLE

    Automated Disassembly Sequence Prediction for Industry 4.0 Using Enhanced Genetic Algorithm

    Anil Kumar Gulivindala1, M. V. A. Raju Bahubalendruni1, R. Chandrasekar1,2, Ejaz Ahmed2, Mustufa Haider Abidi3,*, Abdulrahman Al-Ahmari4

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 2531-2548, 2021, DOI:10.32604/cmc.2021.018014

    Abstract The evolution of Industry 4.0 made it essential to adopt the Internet of Things (IoT) and Cloud Computing (CC) technologies to perform activities in the new age of manufacturing. These technologies enable collecting, storing, and retrieving essential information from the manufacturing stage. Data collected at sites are shared with others where execution automatedly occurs. The obtained information must be validated at manufacturing to avoid undesirable data losses during the de-manufacturing process. However, information sharing from the assembly level at the manufacturing stage to disassembly at the product end-of-life state is a major concern. The current research validates the information optimally… More >

Displaying 1-10 on page 1 of 3. Per Page