Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (27)
  • Open Access

    ARTICLE

    Novel Investigation of Stochastic Fractional Differential Equations Measles Model via the White Noise and Global Derivative Operator Depending on Mittag-Leffler Kernel

    Saima Rashid1,2,*, Fahd Jarad3,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2289-2327, 2024, DOI:10.32604/cmes.2023.028773

    Abstract Because of the features involved with their varied kernels, differential operators relying on convolution formulations have been acknowledged as effective mathematical resources for modeling real-world issues. In this paper, we constructed a stochastic fractional framework of measles spreading mechanisms with dual medication immunization considering the exponential decay and Mittag-Leffler kernels. In this approach, the overall population was separated into five cohorts. Furthermore, the descriptive behavior of the system was investigated, including prerequisites for the positivity of solutions, invariant domain of the solution, presence and stability of equilibrium points, and sensitivity analysis. We included a stochastic element in every cohort and… More >

  • Open Access

    ARTICLE

    A Nonstandard Computational Investigation of SEIR Model with Fuzzy Transmission, Recovery and Death Rates

    Ahmed H. Msmali1, Fazal Dayan2,*, Muhammad Rafiq3, Nauman Ahmed4, Abdullah Ali H. Ahmadini1, Hassan A. Hamali5

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2251-2269, 2023, DOI:10.32604/cmc.2023.040266

    Abstract In this article, a Susceptible-Exposed-Infectious-Recovered (SEIR) epidemic model is considered. The equilibrium analysis and reproduction number are studied. The conventional models have made assumptions of homogeneity in disease transmission that contradict the actual reality. However, it is crucial to consider the heterogeneity of the transmission rate when modeling disease dynamics. Describing the heterogeneity of disease transmission mathematically can be achieved by incorporating fuzzy theory. A numerical scheme nonstandard, finite difference (NSFD) approach is developed for the studied model and the results of numerical simulations are presented. Simulations of the constructed scheme are presented. The positivity, convergence and consistency of the… More >

  • Open Access

    ARTICLE

    Construction of a Computational Scheme for the Fuzzy HIV/AIDS Epidemic Model with a Nonlinear Saturated Incidence Rate

    Muhammad Shoaib Arif1,2,*, Kamaleldin Abodayeh1, Yasir Nawaz2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1405-1425, 2024, DOI:10.32604/cmes.2023.028946

    Abstract This work aimed to construct an epidemic model with fuzzy parameters. Since the classical epidemic model does not elaborate on the successful interaction of susceptible and infective people, the constructed fuzzy epidemic model discusses the more detailed versions of the interactions between infective and susceptible people. The next-generation matrix approach is employed to find the reproduction number of a deterministic model. The sensitivity analysis and local stability analysis of the system are also provided. For solving the fuzzy epidemic model, a numerical scheme is constructed which consists of three time levels. The numerical scheme has an advantage over the existing… More >

  • Open Access

    ARTICLE

    Dynamical Analysis of the Stochastic COVID-19 Model Using Piecewise Differential Equation Technique

    Yu-Ming Chu1, Sobia Sultana2, Saima Rashid3,*, Mohammed Shaaf Alharthi4

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2427-2464, 2023, DOI:10.32604/cmes.2023.028771

    Abstract Various data sets showing the prevalence of numerous viral diseases have demonstrated that the transmission is not truly homogeneous. Two examples are the spread of Spanish flu and COVID-19. The aim of this research is to develop a comprehensive nonlinear stochastic model having six cohorts relying on ordinary differential equations via piecewise fractional differential operators. Firstly, the strength number of the deterministic case is carried out. Then, for the stochastic model, we show that there is a critical number that can predict virus persistence and infection eradication. Because of the peculiarity of this notion, an interesting way… More >

  • Open Access

    ARTICLE

    On Fractional Differential Inclusion for an Epidemic Model via L-Fuzzy Fixed Point Results

    Maha Noorwali1, Mohammed Shehu Shagari2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1937-1956, 2023, DOI:10.32604/cmes.2023.028239

    Abstract The real world is filled with uncertainty, vagueness, and imprecision. The concepts we meet in everyday life are vague rather than precise. In real-world situations, if a model requires that conclusions drawn from it have some bearings on reality, then two major problems immediately arise, viz. real situations are not usually crisp and deterministic; complete descriptions of real systems often require more comprehensive data than human beings could recognize simultaneously, process and understand. Conventional mathematical tools which require all inferences to be exact, are not always efficient to handle imprecisions in a wide variety of practical situations. Following the latter… More >

  • Open Access

    ARTICLE

    Stochastic Analysis for the Dynamics of a Poliovirus Epidemic Model

    Ali Raza1, Dumitru Baleanu2,3,4, Zafar Ullah Khan5, Muhammad Mohsin6,*, Nauman Ahmed7, Muhammad Rafiq8, Pervez Anwar9

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 257-275, 2023, DOI:10.32604/cmes.2023.023231

    Abstract Most developing countries such as Afghanistan, Pakistan, India, Bangladesh, and many more are still fighting against poliovirus. According to the World Health Organization, approximately eighteen million people have been infected with poliovirus in the last two decades. In Asia, still, some countries are suffering from the virus. The stochastic behavior of the poliovirus through the transition probabilities and non-parametric perturbation with fundamental properties are studied. Some basic properties of the deterministic model are studied, equilibria, local stability around the stead states, and reproduction number. Euler Maruyama, stochastic Euler, and stochastic Runge-Kutta study the behavior of complex stochastic differential equations. The… More >

  • Open Access

    ARTICLE

    New Trends in Fuzzy Modeling Through Numerical Techniques

    M. M. Alqarni1, Muhammad Rafiq2, Fazal Dayan3,*, Jan Awrejcewicz4, Nauman Ahmed5, Ali Raza6, Muhammad Ozair Ahmad5, Witold Pawłowski7, Emad E. Mahmoud8

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6371-6388, 2023, DOI:10.32604/cmc.2023.033553

    Abstract Amoebiasis is a parasitic intestinal infection caused by the highly pathogenic amoeba Entamoeba histolytica. It is spread through person-to-person contact or by eating or drinking food or water contaminated with feces. Its transmission rate depends on the number of cysts present in the environment. The traditional models assumed a homogeneous and contradictory transmission with reality. The heterogeneity of its transmission rate is a significant factor when modeling disease dynamics. The heterogeneity of disease transmission can be described mathematically by introducing fuzzy theory. In this context, a fuzzy SEIR Amoebiasis disease model is considered in this study. The equilibrium analysis and… More >

  • Open Access

    ARTICLE

    A Neural Study of the Fractional Heroin Epidemic Model

    Wajaree Weera1, Thongchai Botmart1,*, Samina Zuhra2, Zulqurnain Sabir3, Muhammad Asif Zahoor Raja4, Salem Ben Said5

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 4453-4467, 2023, DOI:10.32604/cmc.2023.033232

    Abstract This works intends to provide numerical solutions based on the nonlinear fractional order derivatives of the classical White and Comiskey model (NFD-WCM). The fractional order derivatives have provided authentic and accurate solutions for the NDF-WCM. The solutions of the fractional NFD-WCM are provided using the stochastic computing supervised algorithm named Levenberg-Marquard Backpropagation (LMB) based on neural networks (NNs). This regression approach combines gradient descent and Gauss-Newton iterative methods, which means finding a solution through the sequences of different calculations. WCM is used to demonstrate the heroin epidemics. Heroin has been on-growth world wide, mainly in Asia, Europe, and the USA.… More >

  • Open Access

    ARTICLE

    Bayesian Convolution for Stochastic Epidemic Model

    Mukhsar1,*, Ansari Saleh Ahmar2, M. A. El Safty3, Hamed El-Khawaga4,5, M. El Sayed6

    Intelligent Automation & Soft Computing, Vol.34, No.2, pp. 1175-1186, 2022, DOI:10.32604/iasc.2022.025214

    Abstract Dengue Hemorrhagic Fever (DHF) is a tropical disease that always attacks densely populated urban communities. Some factors, such as environment, climate and mobility, have contributed to the spread of the disease. The Aedes aegypti mosquito is an agent of dengue virus in humans, and by inhibiting its life cycle it can reduce the spread of the dengue disease. Therefore, it is necessary to involve the dynamics of mosquito's life cycle in a model in order to obtain a reliable risk map for intervention. The aim of this study is to develop a stochastic convolution susceptible, infective, recovered-susceptible, infective (SIR-SI) model… More >

  • Open Access

    ARTICLE

    Mathematical Modelling of Rotavirus Disease Through Efficient Methods

    Ali Raza*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4727-4740, 2022, DOI:10.32604/cmc.2022.027044

    Abstract The design of evolutionary approaches has a vital role in the recent development of scientific literature. To tackle highly nonlinear complex problems, nonlinear ordinary differential equations, partial differential equations, stochastic differential equations, and many more may called computational algorithms. The rotavirus causes may include severe diarrhea, vomiting, and fever leading to rapid dehydration. By the report of the World Health Organization (WHO), approximately 600,000 children die worldwide each year, 80 percent of whom live in developing countries. Two million children are hospitalized each year. In Asia, up to 45 percent of the children hospitalized for diarrhea may be infected with… More >

Displaying 1-10 on page 1 of 27. Per Page