Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (37)
  • Open Access

    ARTICLE

    Dynamic Reliability Evaluation and Life Prediction of Transmission System of Multi-Performance Degraded Wind Turbine

    Rong Yuan1, Ruitao Chen2, Haiqing Li3,*, Wenke Yang1, Xiaoxiao Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2331-2347, 2023, DOI:10.32604/cmes.2023.023788 - 23 November 2022

    Abstract Wind power is a kind of important green energy. Thus, wind turbines have been widely utilized around the world. Wind turbines are composed of many important components. Among these components, the failure rate of the transmission system is relatively high in wind turbines. It is because the components are subjected to aerodynamic loads for a long time. In addition, its inertial load will result in fatigue fracture, wear and other problems. In this situation, wind turbines have to be repaired at a higher cost. Moreover, the traditional reliability methods are difficult to deal with the More >

  • Open Access

    REVIEW

    Analytical Models of Concrete Fatigue: A State-of-the-Art Review

    Xiaoli Wei1, D. A. Makhloof1,2, Xiaodan Ren1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.1, pp. 9-34, 2023, DOI:10.32604/cmes.2022.020160 - 24 August 2022

    Abstract Fatigue failure phenomena of the concrete structures under long-term low amplitude loading have attracted more attention. Some structures, such as wind power towers, offshore platforms, and high-speed railways, may resist millions of cycles loading during their intended lives. Over the past century, analytical methods for concrete fatigue are emerging. It is concluded that models for the concrete fatigue calculation can fall into four categories: the empirical model relying on fatigue tests, fatigue crack growth model in fracture mechanics, fatigue damage evolution model based on damage mechanics and advanced machine learning model. In this paper, a More >

  • Open Access

    ARTICLE

    Numerical and Experimental Investigations of the Thermal Fatigue Lifetime of CBGA Packages

    Borui Yang1, Jun Luo2, Bo Wan1,*, Yutai Su1,3, Guicui Fu1, Xu Long3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.2, pp. 1113-1134, 2022, DOI:10.32604/cmes.2022.018037 - 13 December 2021

    Abstract A thermal fatigue lifetime prediction model of ceramic ball grid array (CBGA) packages is proposed based on the Darveaux model. A finite element model of the CBGA packages is established, and the Anand model is used to describe the viscoplasticity of the CBGA solder. The average viscoplastic strain energy density increment ΔWave of the CBGA packages is obtained using a finite element simulation, and the influence of different structural parameters on the ΔWave is analyzed. A simplified analytical model of the ΔWave is established using the simulation data. The thermal fatigue lifetime of CBGA packages More >

  • Open Access

    ARTICLE

    Topology Optimization with Aperiodic Load Fatigue Constraints Based on Bidirectional Evolutionary Structural Optimization

    Yongxin Li1, Guoyun Zhou1, Tao Chang1,*, Liming Yang2, Fenghe Wu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.1, pp. 499-511, 2022, DOI:10.32604/cmes.2022.017630 - 29 November 2021

    Abstract Because of descriptive nonlinearity and computational inefficiency, topology optimization with fatigue life under aperiodic loads has developed slowly. A fatigue constraint topology optimization method based on bidirectional evolutionary structural optimization (BESO) under an aperiodic load is proposed in this paper. In view of the severe nonlinearity of fatigue damage with respect to design variables, effective stress cycles are extracted through transient dynamic analysis. Based on the Miner cumulative damage theory and life requirements, a fatigue constraint is first quantified and then transformed into a stress problem. Then, a normalized termination criterion is proposed by approximate More >

  • Open Access

    ARTICLE

    Fatigue Performance of Orthotropic Steel Decks in Super-Wide Steel Box Girder Considering Transverse Distribution of Vehicle Load

    Xudong Wang1,2, Changqing Miao1,2,*, Mao Yang1,2, Youliang Ding1,2

    Structural Durability & Health Monitoring, Vol.15, No.4, pp. 299-316, 2021, DOI:10.32604/sdhm.2021.017526 - 23 November 2021

    Abstract This study presents an investigation on the fatigue analysis of four types of details on orthotropic steel decks (OSDs) for a cable-stayed super-wide steel box girder bridge based on finite-element analysis (FEA) with vehicle transverse distribution model (VTDM). A high-fidelity 3D FE model verified by the static load test is established to satisfy the fatigue analysis accuracy. The stress behavior of super-wide steel box girders under the vehicle load at different lane locations is investigated. Then, considering the effect of VTDM, the fatigue life analysis of four typical details is performed using the Miner cumulative More >

  • Open Access

    ARTICLE

    Numerical Simulation of Bone Plate with Fatigue Crack and Investigation of Attraction Hole for Retarding Crack Growth

    Zhonghang Zhao, Aimin Ji*, Changsheng Chen

    Molecular & Cellular Biomechanics, Vol.18, No.4, pp. 173-185, 2021, DOI:10.32604/mcb.2021.016238 - 27 October 2021

    Abstract Premature fracture of the bone plate caused by fatigue crack is the main failure mode in treating femoral shaft fracture. In order to improve the durability of the plate, this study proposed a crack attraction hole (CAH) to retard the crack propagation based on the fracture mechanics. In this paper, a numerical model of the femoral fracture internal fixation system was constructed, in which the femur was developed using a validated simplified model. First, the fatigue crack initiation location was defined at the stress concentration through static analysis. Next, with the joint simulation method of… More >

  • Open Access

    ARTICLE

    Probabilistic Life Calculation Method of NdFeB Based on Brittle Fatigue Damage Model

    Lei Li, Guolai Yang*, Jiahao Li

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.3, pp. 865-884, 2020, DOI:10.32604/cmes.2020.010720 - 21 August 2020

    Abstract This paper proposes a probabilistic life calculation method of NdFeB based on brittle fatigue damage model. Firstly, Zhu-Wang-Tang (ZWT) constitutive model considering strain rate is established, and based on this, a numerical co-simulation model for NdFeB life calculation is constructed. The life distribution diagram of NdFeB under different stress levels is obtained after simulation. Secondly, a new model of brittle fatigue damage based on brittle damage mechanism is proposed. Then the parameters in the model are identified according to the life distribution diagram of NdFeB and the parameter distribution of the damage evolution model when More >

  • Open Access

    ARTICLE

    Experimental Study on Fatigue Performance of Reinforced Concrete Beams in Corrosive Environment with Cyclic Loads

    Hui Wang1,2, Shiqin He1,*, Xiaoqiang Yin3, Zeyang Cao1

    Structural Durability & Health Monitoring, Vol.14, No.2, pp. 95-108, 2020, DOI:10.32604/sdhm.2020.06595 - 23 June 2020

    Abstract In marine environments, reinforced concrete bridge structures are subjected to cyclic loads and chloride ingress, which results in corrosion of the reinforcing bars, early deterioration, durability loss, and a considerable reduction in the fatigue strength. Owing to the complexity of the problem and the difficulty of testing, there are few studies on the fatigue performance of concrete structures under the combined action of corrosion environment and cyclic load. Therefore, a coupling test device for corrosion and cyclic load is designed and fatigue tests of reinforced concrete beams in air environments and chlorine salt corrosive environments… More >

  • Open Access

    ARTICLE

    Fatigue Life Evaluation Method for Foundry Crane Metal Structure Considering Load Dynamic Response and Crack Closure Effect

    Qing Dong1, *, Bin He1, Gening Xu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.2, pp. 525-553, 2020, DOI:10.32604/cmes.2020.08498 - 01 February 2020

    Abstract To compensate for the shortcomings of quasi-static law in anti-fatigue analysis of foundry crane metal structures, the fatigue life evaluation method of foundry crane metal structure considering load dynamic response and crack closure effect is proposed. In line with the theory of mechanical vibration, a dynamic model of crane structure during the working cycle is constructed, and dynamic coefficients under diverse actions are analysed. Calculation models of the internal force dynamic change process of dangerous cross-sections and a simulation model of first principal stress-time history are established by using the steel structure design criteria, which… More >

  • Open Access

    ARTICLE

    Vibration Analysis of a Drillstring in Horizontal Well

    Xiaohua Zhu1,*, Li Zeng1, Bo Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.121, No.2, pp. 631-660, 2019, DOI:10.32604/cmes.2019.06755

    Abstract The complicated geological conditions will bring great challenges to the drillstring of horizontal wells for the reason that the increase of the well depth in SichuanChongqing region. Since drillstring failure and friction during drilling are generally caused by drillstring vibration, great importance must be attached to computer simulation methods for the prediction of drillstring vibration. A finite element model considering axial, lateral and torsional vibration is established. In order to verify the established numerical model, an indoor experimental device based on the similarity principle was established. The vibration characteristics of three shale gas horizontal wells… More >

Displaying 11-20 on page 2 of 37. Per Page